首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustained drought and concomitant high temperature may reduce photosynthesis and cause tree mortality. Possible causes of reduced photosynthesis include stomatal closure and biochemical inhibition, but their relative roles are unknown in Amazon trees during strong drought events. We assessed the effects of the recent (2015) strong El Niño drought on leaf‐level photosynthesis of Central Amazon trees via these two mechanisms. Through four seasons of 2015, we measured leaf gas exchange, chlorophyll a fluorescence parameters, chlorophyll concentration, and nutrient content in leaves of 57 upper canopy and understory trees of a lowland terra firme forest on well‐drained infertile oxisol. Photosynthesis decreased 28% in the upper canopy and 17% in understory trees during the extreme dry season of 2015, relative to other 2015 seasons and was also lower than the climatically normal dry season of the following non‐El Niño year. Photosynthesis reduction under extreme drought and high temperature in the 2015 dry season was related only to stomatal closure in both upper canopy and understory trees, and not to chlorophyll a fluorescence parameters, chlorophyll, or leaf nutrient concentration. The distinction is important because stomatal closure is a transient regulatory response that can reverse when water becomes available, whereas the other responses reflect more permanent changes or damage to the photosynthetic apparatus. Photosynthesis decrease due to stomatal closure during the 2015 extreme dry season was followed 2 months later by an increase in photosynthesis as rains returned, indicating a margin of resilience to one‐off extreme climatic events in Amazonian forests.  相似文献   

2.
In an old‐growth tropical wet forest at La Selva, Costa Rica, we combined radiocarbon (14C) dating and tree‐ring analysis to estimate the ages of large trees of canopy and emergent species spanning a broad range of wood densities and growth rates. We collected samples from the trunks of 29 fallen, dead individuals. We found that all eight sampled species formed visible growth rings, which varied considerably in distinctiveness. For five of the six species for which we combined wood anatomical studies with 14C‐dates (ring ages), the analyses demonstrated that growth rings were of annual formation. The oldest tree we found by direct ring counting was a Hymenolobium mesoamericanum Lima (Papilionaceae) specimen, with an age of ca. 530 years at the time of death. All other sampled individuals, including very large trees of slow‐growing species, had died at ages between 200 and 300 years. These results show that, even in an everwet tropical rain forest, tree growth of many species can be rhythmic, with an annual periodicity. This study thus raises the possibility of extending tree‐ring analyses throughout the tropical forest types lacking a strong dry season or annual flooding. Our findings and similar measurements from other tropical forests indicate that the maximum ages of tropical emergent trees are unlikely to be much greater than 600 years, and that these trees often die earlier from various natural causes.  相似文献   

3.
Uneven winter snow influence on tree growth across temperate China   总被引:1,自引:0,他引:1  
Winter snow is an important driver of tree growth in regions where growing‐season precipitation is limited. However, observational evidence of this influence at larger spatial scales and across diverse bioclimatic regions is lacking. Here, we investigated the interannual effects of winter (here defined as previous October to current February) snow depth on tree growth across temperate China over the period of 1961–2015, using a regional network of tree ring records, in situ daily snow depth observations, and gridded climate data. We report uneven effects of winter snow depth on subsequent growing‐season tree growth across temperate China. There shows little effect on tree growth in drier regions that we attribute mainly to limited snow accumulation during winter. By contrast, winter snow exerts important positive influence on tree growth in stands with high winter snow accumulation (e.g., in parts of cold arid regions). The magnitude of this effect depends on the proportion of winter snow to pre‐growing‐season (previous October to current April) precipitation. We further observed that tree growth in drier regions tends to be increasingly limited by warmer growing‐season temperature and early growing‐season water availability. No compensatory effect of winter snow on the intensifying drought limitation of tree growth was observed across temperate China. Our findings point toward an increase in drought vulnerability of temperate forests in a warming climate.  相似文献   

4.
《Global Change Biology》2018,24(8):3537-3545
Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life‐span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.  相似文献   

5.
Recent world‐wide episodes of tree dieback have been attributed to increasing temperatures and associated drought. Because these events are likely to become more common, improved knowledge of their cumulative effects on resilience and the ability to recover pre‐disturbance conditions is important for forest management. Here we propose several indices to examine components of individual tree resilience based on tree ring growth: resistance (inverse of growth reduction during the episode), recovery (growth increase relative to the minimum growth during the episode), resilience (capacity to reach pre‐episode growth levels) and relative resilience (resilience weighted by the damage incurred during the episode). Based on tree ring analyses, we analyzed historical patterns of tree resilience to successive drought‐induced low growth periods in ponderosa pine trees growing in unmanaged, remote forests of the Rocky Mountains. Low‐growth periods registered in tree rings were related to anomalies in the Palmer drought severity index (PDSI) and were attributed to drought. Independently of the impact of a specific event, subsequent growth after a single low‐growth episode was related to the growth prior to the event. Growth performance differed with tree age: young trees were overall more resistant to low‐growth periods, but older trees recovered better from more recent events. Regardless of tree age, recently burned sites exhibited lower post‐episode growth and lower resistance and resilience than unburned ones. We found mixed evidence for the cumulative effect of past low‐growth episodes: overall, greater impacts of a prior event and greater cumulative effects of past low‐growth periods caused a decrease in resistance. However, we did not find a progressive decrease in resilience over time in old trees. Our results highlight the value of using a combination of estimators to evaluate the different components of resilience. Specifically, while tree responses to disturbance depend on past disturbance episodes, the response is context‐specific and depends on the impact the capacity to recover after disturbance. This suggests that recent increases in forest mortality under current climate trends could relate to thresholds on specific components of resilience (resistance, recovery, resilience itself) rather than to an overall loss of resilience over time. Identifying such thresholds and their underlying mechanisms is a promising area of research with important implications for forest management.  相似文献   

6.
Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These “drought legacy effects” have been widely documented in tree‐ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree‐ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree‐ring records, leaf‐level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree‐ring width increments in the year following the severe drought. Despite this stand‐scale reduction in radial growth, we found that leaf‐level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf‐level photosynthesis co‐occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree‐ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree‐ring signals from GPP.  相似文献   

7.
Tree mortality from drought is anticipated to increase as climate change promotes more frequent or severe water limitation. Ecosystem impacts of woody mortality depend on both the number and sizes of trees that die, but a limited capacity to predict mortality risk for individual trees hinders the capacity to forecast drought effects on tree population demography and ecosystem processes. We remotely measured leaf area of living Ashe juniper trees at three savanna sites in central Texas, USA to characterize the frequency-size distribution (FSD) of juniper populations and evaluate mortality risk from drought as a function of tree size. Mortality risk of individuals was assessed from the deviation in leaf area per tree from that of a similarly sized individual with near maximal leaf area using correlations among leaf area, growth rate, and mortality measured during a prior drought. We found that the FSD of juniper trees is bell-shaped at each site. Mortality risk from drought exceeded 25% of emergent (>?4 m height) trees in savanna juniper populations, but was highest for largest trees. Mortality risk was greatest at a grazed savanna, exceeding 50% of trees with projected canopy area >?20 m2. Results imply that severe drought could kill a large fraction (18–85%) of intermediate- to large-sized Ashe juniper trees in central Texas savannas. Our analysis demonstrates a novel use of remote measurements of canopy foliation to link mortality risk from drought to the demography of Ashe juniper populations through properties of individual trees.  相似文献   

8.
Aim It has been proposed that, in tropical savannas, trees deploy their leaves earlier in the growing season and grasses deploy their leaves later. This hypothesis implies a mechanism that facilitates the coexistence of trees and grasses in savannas. If true, this hypothesis would also allow algorithms to use differences in the phenological timing of grass and tree leaves to partition the relative contribution of grasses and trees to net primary production. In this study we examine whether a temporal niche separation between grasses and trees exists in savanna. Location A semi‐arid, subtropical savanna, Kruger National Park, South Africa. Methods We use a multi‐spectral camera to track through an entire growing season the normalized difference vegetation index (NDVI) of individual canopies of grasses and trees at eight sites arranged along a precipitation and temperature gradient. Results Among trees, we identified two distinct phenological syndromes: an early flushing syndrome and a late‐flushing syndrome. Leaf flush in the tree strategies appears to pre‐empt rainfall, whereas grass leaf flush follows the rain. The growing season of trees is 20 (late‐flushing trees) to 27 (early flushing trees) days longer than that of the grasses. Main conclusions We show that grasses and trees have different leaf deployment strategies. Trees deployed leaves at lower temperatures than grasses and retained them for longer at the end of the growing season. The timing of the increase in NDVI is, however, similar between grasses and late‐flushing trees and this complicates the separation of grass and tree signals from multi‐spectral satellite imagery.  相似文献   

9.
Seasonal variations in environmental conditions influence the functioning of the whole ecosystem of tropical rain forests, but as yet little is known about how such variations directly influence the leaf gas exchange and transpiration of individual canopy tree species. We examined the influence of seasonal variations in relative extractable water in the upper soil layers on predawn leaf water potential, saturated net photosynthesis, leaf dark respiration, stomatal conductance, and tree transpiration of 13 tropical rain forest canopy trees (eight species) over 2 yr in French Guiana. The canopies were accessed by climbing ropes attached to the trees and to a tower. Our results indicate that a small proportion of the studied trees were unaffected by soil water depletion during seasonal dry periods, probably thanks to efficient deep root systems. The trees showing decreased tree water status (i.e., predawn leaf water potential) displayed a wide range of leaf gas exchange responses. Some trees strongly regulated photosynthesis and transpiration when relative extractable water decreased drastically. In contrast, other trees showed little variation, thus indicating good adaptation to soil drought conditions. These results have important applications to modeling approaches: indeed, precise evaluation and grouping of these response patterns are required before any tree‐based functional models can efficiently describe the response of tropical rain forest ecosystems to future changes in environmental conditions.  相似文献   

10.
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.  相似文献   

11.
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate‐resolution imaging spectro‐radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape‐induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape‐induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change.  相似文献   

12.
Jingjing Yin  Taryn L. Bauerle 《Oikos》2017,126(10):1377-1388
Plant post‐drought recovery performance is essential to predict shifts in ecosystem dynamics and production during frequent climate change‐driven drought events. Yet, it is not clear how post‐drought recovery is related to evolutionary and geographic variations in plants. In this study, we generated a global data set of post‐drought recovery performance in 140 plant species from published studies. We quantified the plant post‐drought recovery performance by calculating a recovery index for multiple plant physiological and hydraulic parameters, including leaf water potential, net photosynthetic rate, leaf hydraulic conductance and shoot biomass. The magnitude of recovery among four plant functional types (deciduous angiosperms, evergreen angiosperms, gymnosperms, and crops), two plant growth forms (shrubs and trees), two water management strategies (isohydric and anisohydric), four xylem porosity types (diffuse, ring, semi‐ring and tracheid), and four major biomes (dry sclerophyll forest, boreal forest, temperate forest and tropical/subtropical forest) were compared. We found the inability to completely recover immediately after severe water stress is ubiquitous across all plant functional types and growth forms, while the rate and magnitude of post‐drought recovery varied greatly across different plant taxonomic categories and geographic ranges. In general, plant hydraulic architecture, leaf anatomy and physiology affect plants’ propensity towards recovery, and reflect evolutionary consequences of plant adaptation to their habitat. Due to the essential role of plant functional traits in regulating carbon storage in each biome, a better understanding plant post‐drought recovery performance could improve our predictions on ecosystem productivity in a rapidly changing climate.  相似文献   

13.
In order to investigate how environmental factors other than light availability affect tree architecture, differences in branching architecture and allometry were analysed in populations of Acacia karroo Hein. from three different environments in South Africa: forests, savannas and arid‐shrublands. Factors such as fire and herbivory have a large effect on tree life history in certain environments and are likely to have selected for trees that have different architectures from those of forest trees, whose major limitation is light assimilation. Significant differences were found in stem architecture and branching architecture between trees in each environment. Compared with forest trees, trees in savannas had an elongated growth form with small canopy and leaf areas, and tall, thin, unbranched trunks. Trees in arid areas showed opposite trends with wider canopies, and increased lateral branching. Savanna trees had significantly smaller spines than trees in other environments, and both forest and savanna trees showed delayed reproduction. These differences are probably related to a trade‐off between an architecture geared towards rapid height‐gain and one promoting lateral spread, and can be explained with reference to the different selective pressures in each environment. In forests, vertical and horizontal growth are both important. However, in savannas there is a great pressure for rapid vertical growth to escape fires, while in arid areas a defensive, lateral growth form is selected for. Savanna trees and arid karoo trees have evolved architectures that are more extreme vertically and laterally than the range of architectures displayed in a forest community.  相似文献   

14.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

15.
叶片气孔是植物进行水汽交换的通道, 影响着植物的蒸腾和光合作用。然而叶片气孔行为受环境条件和树种类型的影响, 不同树种冠层气孔导度对环境因子响应的差异性, 以及在生长季不同时期叶片气孔对冠层蒸腾的调节作用是否会发生改变, 仍不清楚。该研究目的是通过探究各环境因子对不同树种冠层气孔导度的相对贡献率以及叶片气孔对冠层蒸腾的调节作用, 为深入了解植物水分利用状况和山区森林经营提供参考依据。于2018年生长季以北京八达岭国家森林公园内的58年生油松(Pinus tabuliformis)和39年生元宝槭(Acer truncatum)为研究对象, 利用热扩散技术对其树干液流进行连续监测, 并同步监测环境因子。利用彭曼公式计算冠层气孔导度(Gs)。主要结果: (1)油松和元宝槭日间Gs在日、月时间尺度上存在明显差异。5-7月油松和元宝槭日动态Gs均随饱和水汽压差(VPD)和太阳辐射(GR)的增加呈上升趋势, 上升持续时间比8月和9月长; 在月尺度上, 随着VPDGR的降低和土壤湿度(VWC)的升高, Gs从5月到9月整体上升。(2)利用增强回归树法分析得到VWCVPDGs的贡献率最大, 其次是GR、气温和风速。VWCVPD对油松Gs的贡献率分别为66.4%和17.4%, 对元宝槭Gs的贡献率分别为54.8%和21.0%。(3)油松和元宝槭的dGs/dlnVPD值与参考冠层气孔导度之间的斜率均显著高于0.6, 气孔调节作用相对较强。综上所述, 气孔对环境因子的响应在树种以及生长季不同时期之间存在差异, 为防止水分过度散失, 两树种在不同土壤水分条件下均通过严格的气孔调节控制蒸腾量。  相似文献   

16.
While forest communities are changing as a result of global environmental change, the impacts of tree species shifts on ecosystem services such as carbon storage are poorly quantified. In many parts of the eastern United States (US), more xeric-adapted oak-hickory dominated stands are being replaced with mesic beech-maple assemblages. To examine the possible impacts of this ongoing change in forest composition, we investigated how two wide-ranging and co-occurring eastern US species – Acer saccharum (sugar maple) and Quercus alba (white oak) – respond to interannual climate variability. Using 781 tree cores from 418 individual trees at 18 locations, we found late-growing season drought reduced A. saccharum growth more than that of Q. alba. A gradient in the growth reduction across latitude was also found in A. saccharum, where southern populations of A. saccharum experienced greater reductions in growth during drought. Drought had a legacy effect on growth for both species, with drought occurring later in the growing season having a larger legacy effect. Consequently, as forests shift from oak to maple dominance, drought in the later part of the growing season is likely to become an increasingly important control on forest productivity. Thus, our findings suggest that co-occurring species are responding to environmental conditions during different times in the growing season and, therefore, the timing of drought conditions will play an important role in forest productivity and carbon sequestration as forest species composition changes. These findings are particularly important because the projected increases in potential evapotranspiration, combined with possible changes in the seasonality of precipitation could have a substantial impact on how tree growth responds to future climatic change.  相似文献   

17.
Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra‐annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.  相似文献   

18.
Long-term and direct measurements of CO2 and water vapour exchange are needed over forested ecosystems to determine their net annual fluxes of carbon dioxide and water. Such measurements are also needed to parameterize and test biogeochemical, ecological and hydrological assessment models. Responding to this need, eddy covariance measurements of CO2 and water vapour were made ever a deciduous forest growing near Oak Ridge, TN, between April 1993 and April 1994. Periodic measurements were made of leaf area index, stomatal resistance, soil moisture and pre-dawn leaf water potential to characterize the gas exchange capacity of the canopy. Four factors had a disproportionate influence on the seasonal variation of CO2 flux densities. These factors were photon flux densities (during the growing season), temperature (during the dormant season), leaf area index and the occurrence of drought The drought period occurred during the peak of the growing season and caused a significant decline in daily and hourly CO2 flux densities, relative to observations over the stand when soil moisture was plentiful. The annual net uptake of carbon was calculated by integrating flux measurements and filling missing and spurious data with the relations obtained between measured CO2 fluxes and environmental forcing variables. The net flux of carbon for the period between April 1993 and April 1994 was -525 g C m?2 y?1. This value represents a net flux of carbon from the atmosphere and into the forest. The net annual carbon exchange of this southern temperate broadleaved forest exceeded values measured over a northern temperate forest (which experiences a shorter growing season and has less leaf area) by 200 g C m?2 y?1 (cf. Wofsy et al 1993). The seasonal variation of canopy evaporation (latent heat flux) was controlled mostly by changes in leaf area and net radiation. A strong depression in evaporation rates was not observed during the drought Over a broadleaved forest large vapour pressure deficits promote evaporation and trees in a mixed stand are able to tap a variety of deep and shallow water sources.  相似文献   

19.
《Global Change Biology》2018,24(6):2339-2351
Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.  相似文献   

20.
Effective reforestation of degraded tropical forests depends on selecting planting material suited to the stressful environments typical at restoration sites that can be exacerbated by increased duration and intensity of dry spells expected with climate change. While reforestation efforts in nontropical systems are incorporating drought‐adapted genotypes into restoration programs to cope with drier conditions, such approaches have not been tested or implemented in tropical forests. As the first effort to examine genetic variation in plant response to drought in a tropical wet forest, we established a watering experiment using five replicated maternal lines (i.e. seedlings from different maternal trees) of five dipterocarp species native to Borneo. Apart from the expected species level variation in growth and herbivory (3‐fold variation in both cases), we also found intraspecific variation so that growth in some cases varied 2‐fold, and herbivory 3‐fold, among genetically different maternal lines. In two species we found that among‐maternal line variation in growth rate was negatively correlated with tolerance to water limitation, that is, the maternal lines that performed the best in the high water treatment lost proportionally more of their growth during water limitation. We argue that selection for tolerance to future drier conditions is not only likely to impact population genetics of entire forests, but likely extends from forest trees to the communities of canopy arthropods associated with these trees. In tropical reforestation efforts where increased drought is predicted from climate change, including plant material resilient to drier conditions may improve restoration effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号