首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aims It is known that taxonomic diversity can be predicted by the spatial configuration of the habitat, in particular by its area and degree of isolation. However, taxonomic diversity is a poor predictor of ecosystem functioning. While functional diversity is strongly linked to the functionality and stability of ecosystems, little is known about how changes in the spatial configuration of the habitat affect functional diversity. In this study, we evaluated whether the spatial configuration of forest patches predicts the functional diversity of plants in a fragmented forest.Methods Five functional leaf traits (leaf dry matter content, leaf punch force, specific leaf area, leaf size and leaf thickness) were measured for 23 dominant plant species in 20 forest patches in a naturally fragmented forest on the Yucatan Peninsula. Abundance-weighted multivariate and individual trait metrics of functional diversity were calculated and correlated with size, degree of isolation and the shape of forest patches.Important findings Patch shape was negatively correlated with multivariate and individual trait (leaf dry matter content and leaf size) metrics of functional diversity. Patch isolation measures were also negatively correlated with individual trait (leaf dry matter content, leaf punch force and leaf size) metrics of functional diversity. In other words, greater patch shape irregularity and isolation degree impoverish plant functional variability. This is the first report of the negative effects of patch shape irregularity and isolation on the functional diversity of plant communities in a forest that has been fragmented for a long time.  相似文献   

3.
Partitioning the turnover and nestedness components of beta diversity   总被引:2,自引:0,他引:2  
Aim  Beta diversity (variation of the species composition of assemblages) may reflect two different phenomena, spatial species turnover and nestedness of assemblages, which result from two antithetic processes, namely species replacement and species loss, respectively. The aim of this paper is to provide a unified framework for the assessment of beta diversity, disentangling the contribution of spatial turnover and nestedness to beta-diversity patterns.
Innovation  I derive an additive partitioning of beta diversity that provides the two separate components of spatial turnover and nestedness underlying the total amount of beta diversity. I propose two families of measures of beta diversity for pairwise and multiple-site situations. Each family comprises one measure accounting for all aspects of beta diversity, which is additively decomposed into two measures accounting for the pure spatial turnover and nestedness components, respectively. Finally, I provide a case study using European longhorn beetles to exemplify the relevance of disentangling spatial turnover and nestedness patterns.
Main conclusion  Assigning the different beta-diversity patterns to their respective biological phenomena is essential for analysing the causality of the processes underlying biodiversity. Thus, the differentiation of the spatial turnover and nestedness components of beta diversity is crucial for our understanding of central biogeographic, ecological and conservation issues.  相似文献   

4.
5.
6.
为揭示城镇化进程中生境破碎化对鸟类多样性及分布格局的影响, 本研究于2017-2019年每年的4-8月使用样线法对贵州花溪大学城26块破碎化林地(面积介于0.3-290.4 ha)中的鸟类群落进行了10次调查。共记录到鸟类78种, 隶属于11目37科。其中, 东洋界物种数占56.4%, 古北界物种数占32.1%, 广布种占11.5%; 有中国特有种1种。剔除高空飞行、非森林鸟类及偶然出现物种后, 不同斑块中的鸟类物种数介于12-55之间, 平均每个斑块有23.2 ± 10.5种。线性回归分析显示, 鸟类物种丰富度与林地斑块的面积有显著相关性, 斑块面积越小, 鸟类物种丰富度越低; 斑块隔离度对物种丰富度没有显著影响。基于物种多度分布矩阵的WNODF (weighted nestedness metric based on overlap and decreasing fill)嵌套分析显示, 不同斑块中鸟类群落呈现出反嵌套结构。小斑块中鸟类物种丰富度较低可能与植物丰富度较低、食物资源稀缺和繁育条件不足有关, 但短距离的隔离对鸟类迁入或扩散影响有限。环境过滤效应、种间竞争或优先效应可能导致不同斑块间存在较大的物种组成差异, 从而导致反嵌套格局。因此, 本研究建议在城市规划建设中应注重维持栖息地的完整性, 对不同面积大小的破碎化斑块都应加以保护。  相似文献   

7.
  1. Mountain streams in southwestern European Alps are currently shifting from perennial to intermittent flow due to the combined effects of climate change and local anthropogenic pressures. Given that flow intermittency is a recently documented phenomenon in the Alps, only scattered studies have investigated functional and taxonomical diversity of benthic invertebrate communities in recently intermittent Alpine streams.
  2. We used a hierarchical sampling design to investigate patterns in taxonomic and functional diversity of benthic invertebrate communities in 13 recently intermittent Alpine streams in north-west Italy. in April 2017, we sampled benthic communities in two reaches of each stream with different hydrological conditions: a control reach, with permanent flow; and an intermittent reach, which recently experienced non-flow periods in summer.
  3. We tested for the response of taxonomic richness at multiple spatial scales by partitioning total diversity into the average richness of local communities and the richness due to variation among local communities both within and among reaches. By partitioning total diversity (γ) into its local (α) and turnover (β) components we showed a decrease in local and regional species richness both within and among reaches, whereas variation among communities was significantly lower in intermittent reaches at the reach scale only.
  4. The analysis of multidimensional trait space of macroinvertebrate communities in reaches with different hydrological conditions revealed a significant reduction of functional diversity, dispersion, and evenness in intermittent reaches. There was trait overdispersion in intermittent reaches, as these hosted both typical Alpine taxa and organisms adapted to flow intermittency. In particular, we observed the replacement of taxa with aquatic respiration and those preferring medium- to fast-flowing oligotrophic waters by taxa adapted to lentic habitats, air breathing and with larval dormancy phases.
  5. These results indicate that recent flow intermittency has caused drastic changes in benthic invertebrate communities in Alpine streams. Our work highlights the importance of integrating taxonomic and functional diversity to thoroughly assess the impacts of flow intermittency.
  相似文献   

8.
We performed Ecological Niche Models (ENMs) to generate climatically suitable areas for anurans in the Brazilian hotspots, the Atlantic Forest (AF), and Cerrado (CER), considering the baseline and future climate change scenarios, to evaluate the differences in the alpha and beta diversity metrics across time. We surveyed anuran occurrence records and generated ENMs for 350 and 155 species in the AF and CER. The final predictive maps for the baseline, 2050, and 2070 climate scenarios, based on an ensemble approach, were used to estimate the alpha (local species richness) and beta diversity metrics (local contribution to beta diversity index and its decomposition into replacement and nestedness components) in each ~50 × 50 km grid cell of the hotspots. Climate change is not expected to drastically change the distribution of the anuran richness gradients, but to negatively impact their whole extensions (i.e., cause species losses throughout the hotspots), except the northeastern CER that is expected to gain in species richness. Areas having high beta diversity are expected to decrease in northeastern CER, whereas an increase is expected in southeastern/southwestern CER under climate change. High beta diversity areas are expected to remain in the same AF locations as the prediction of the baseline climate, but the predominance of species loss under climate change is expected to increase the nestedness component in the hotspot. These results suggest that the lack of similar climatically suitable areas for most species will be the main challenge that species will face in the future. Finally, the application of the present framework to a wide range of taxa is an important step for the conservation of threatened biomes.  相似文献   

9.
Habitat loss is one of the key drivers of the ongoing decline of biodiversity. However, ecologists still argue about how fragmentation of habitat (independent of habitat loss) affects species richness. The recently proposed habitat amount hypothesis posits that species richness only depends on the total amount of habitat in a local landscape. In contrast, empirical studies report contrasting patterns: some find positive and others negative effects of fragmentation per se on species richness. To explain this apparent disparity, we devise a stochastic, spatially explicit model of competitive species communities in heterogeneous habitats. The model shows that habitat loss and fragmentation have complex effects on species diversity in competitive communities. When the total amount of habitat is large, fragmentation per se tends to increase species diversity, but if the total amount of habitat is small, the situation is reversed: fragmentation per se decreases species diversity.  相似文献   

10.
1. Our understanding of the structure and spatial organisation of biological assemblages in human‐modified tropical landscapes has critical importance to improve conservation actions. Investigations on this topic have focused on local (α) diversity patterns, overlooking the changes in species turnover (β diversity) between sites, and its consequences on total (γ) diversity. 2. This study assessed the differences in α, β and γ diversities of galling insects and their host plants (saplings) in a fragmented Atlantic forest landscape in northeast Brazil. Both assemblages were recorded in 30 plots (total of 0.1 ha for each forest type) located in the interior and on the edges of a large fragment and small forest fragments (10 plots per forest type). 3. α diversity of host plants and galling insect assemblages was significantly higher in interior (reference) plots than in edge and fragment plots. Yet, both assemblages showed higher β diversity in fragment and edge plots than in reference plots – a finding potentially associated with the hyperdynamism of fragmented forests and consistent with the landscape divergence hypothesis. 4. However, biotic differentiation of host plant and galling insects was not great enough to compensate the loss of α diversity, and thus γ diversity, because most host plant and galling insect species in forest fragments were also registered in reference plots. Our findings indicate that, despite each small forest fragment being very dissimilar from each other, they have low importance for the conservation of plant assemblages and their specialized herbivores at landscape scale.  相似文献   

11.
生境片段化对蜘蛛群落有着重要影响,目前这方面的研究较少,多集中于不同植被类型间蜘蛛群落的比较研究。在千岛湖片段化景观中选取16个陆桥岛屿,从2010年春季到2011年秋季,按季度(春、夏、秋季)6次采用Winkler法收集蜘蛛标本,分析其物种多度、多样性、季节动态和功能群差异,并对不同大小岛屿上蜘蛛的功能群的多度以及功能群比例差异进行单因素方差分析。结果表明:共收集到蜘蛛标本3503头,用于统计分析的成蛛1438头,归属于30科82种,其中幽灵蛛科(Spermophora)、管巢蛛科(Clubionidae)、螲蟷科(Ctenizidae)、蟹蛛科(Thomisidae)分别占总数的7.37%、6.61%、5.84%、5.29%,螲蟷科(Ctenizidae)在16个岛屿上均有分布。Shannon-Wiener指数在不同季节间差异显著(P0.05),物种丰富度在秋季最高。在功能群上,伏击型蜘蛛的多度最高,其次为游猎型蜘蛛,结圆网型蜘蛛多度最低,穴居型蜘蛛的多度与其他各功能群呈显著差异(P0.05);游猎型蜘蛛与伏击型蜘蛛的多度均显著高于结皿网型蜘蛛与结圆网型蜘蛛(P0.05);蜘蛛的各功能群数量在小岛与大岛这两种不同的岛屿类型上表现出显著差异,小岛上伏击型蜘蛛的物种数显著高于大岛上的物种数;比例上,结皿网型蜘蛛和伏击型蜘蛛在小岛上占功能群总体数目的比例显著低于大岛上的比例(P0.05),小岛上的游猎型蜘蛛占功能群总体数目的比例显著高于大岛上的比例(P0.05),结圆网型蜘蛛与穴居型蜘蛛在不同类型的岛屿间不存在显著差异。总体而言,秋季蜘蛛物种丰富度最高,蜘蛛的多样性与季节相关;生境片段化对蜘蛛功能群的分布产生了一定影响。  相似文献   

12.
We assessed the effects of long-term habitat fragmentation on genetic (random amplified polymorphic DNA) diversity in 11 Peromyscus maniculatus populations in the Lake Superior watershed. We analysed genetic structure at two spatial scales and the effect of island size and isolation on genetic diversity. At the regional scale, island populations differed from mainland populations (FST = 0.36), but mainland populations did not differ from each other (FST = 0.01). At the local scale, populations of the main island of Isle Royale differed from adjacent islet populations (P < 0.001; Monte Carlo approximation of Fisher's exact test), but not from each other (combined P = 0.63). Although geographical distance and genetic distance were positively correlated (P < 0.01; Mantel test), cluster analysis revealed some inconsistencies. Finally, genetic diversity was inversely related to isolation (P = 0.01), but had an unexpectedly negative relationship with island area (P = 0.03). The genetic structure of P. maniculatus populations in portions of the Lake Superior watershed appears to have been affected by long-term habitat fragmentation.  相似文献   

13.
Aim  To evaluate frugivorous butterflies as indicators of forest disturbance in the Brazilian Atlantic Forest.
Location  The study area is located in the municipality of Cotia, São Paulo State, south-eastern Brazil (23°35'−23°50' S, 46°45'−47°15' W).
Methods  Sampling was done at four sites inside a large forest block, the Morro Grande State Reserve, and in five forest fragments in an adjacent fragmented landscape. Butterflies were sampled with portable traps, baited with a fermented mixture of banana and sugar cane juice. Sampling was carried out during the period most favourable for the capture of frugivorous butterflies in south-eastern Brazil.
Results  All richness-related results indicated no effect of forest fragmentation on the frugivorous butterfly guild, concurring with the suggestion of appreciable resistance of Atlantic Forest butterflies to habitat modification. However, species composition discriminated between the two landscapes, indicating that fragmentation may have effects beyond simple species richness. When species were analysed individually, clear patterns of distribution emerged, with some species that were very abundant in the fragmented landscape being practically absent in the continuous landscape, and vice versa. This pattern seems consistent even for some subfamilies.
Main conclusion  Our findings support the usefulness of the frugivorous butterfly guild as a biological indicator of forest disturbance effects in one of the world's most threatened ecosystems.  相似文献   

14.
植物群落物种多样性与功能多样性是生态学研究的热点问题之一,研究其对于保护生物多样性和维持生态系统功能具有重要意义。采用野外群落调查方法,探讨了物种多样性与功能多样性在坡向梯度上的变化格局及其关联性。结果显示:(1)从北坡到南坡,土壤含水量、有机碳呈递减趋势;坡度、照度、土温、pH呈递增趋势;土壤全氮、全磷在西坡明显低于其他各坡向;(2)物种多样性指数均由北坡向南坡依次递减;(3)一元性状功能多样性在各坡向间的差异显著(P<0.05),除LDMCFDrao外,其他功能性状均为北坡大于南坡;(4)多元性状功能丰富度与功能均匀度均由北坡向南坡呈递减的趋势,各坡向的功能均匀度差异性不显著。通过相关分析与通径分析发现,功能多样性指数的主要环境决定因子与限定因子均存在差异:功能丰富度、功能均匀度主要环境限定因子为pH,功能离散度主要环境限定因子为土温;功能离散度主要环境决定因子为土壤含水量;(5)物种多样性指数与功能丰富度呈正线性相关,与功能离散度呈负线性相关,而与功能均匀度不相关。  相似文献   

15.
16.
1. Spatiotemporal patterns of canopy true bug diversity in forests of different tree species diversity have not yet been disentangled, although plant diversity has been shown to strongly impact the diversity and distribution of many insect communities. 2. Here we compare species richness of canopy true bugs across a tree diversity gradient ranging from simple beech to mixed forest stands. We analyse changes in community composition by additive partitioning of species diversity, for communities on various tree species, as well as for communities dwelling on beech alone. 3. Total species richness (γ‐diversity) and α‐diversity, and abundance of true bugs increased across the tree diversity gradient, while diversity changes were mediated by increased true bug abundance in the highly diverse forest stands. The same pattern was found for γ‐diversity in most functional guilds (e.g. forest specialists, herbivores, predators). Temporal and even more, spatial turnover (β‐diversity) among trees was closely related to tree diversity and accounted for ~90% of total γ‐diversity. 4. Results for beech alone were similar, but species turnover could not be related to the tree diversity gradient, and monthly turnover was higher compared to turnover among trees. 5. Our findings support the hypothesis that with increasing tree diversity and thereby increasing habitat heterogeneity, enhanced resource availability supports a greater number of individuals and species of true bugs. Tree species identity and the dissimilarity of true bug communities from tree to tree determine community patterns. 6. In conclusion, understanding diversity and distribution of insect communities in deciduous forests needs a perspective on patterns of spatiotemporal turnover. Heterogeneity among sites, tree species, as well as tree individuals contributed greatly to overall bug diversity.  相似文献   

17.
Analysing which environmental features influence structure of communities is important to establish management and conservation priorities for regional biodiversity. In this study, we analysed the structure of amphibian larval assemblages in southern Brazilian streams and their relationships with local and landscape factors. We sampled tadpoles in 18 streams between November 2014 and February 2015. We collected pH, electric conductivity, temperature and dissolved oxygen in streams, and performed laboratory analyses to estimate metal concentrations in water samples. We collected metrics describing landscape factors, such as the land cover classification of a set of buffers around the streams. We found eight amphibian species in total. Tadpole richness was higher in streams with greater cover of agriculture in the 50 and 100 m buffers, but it was also lower in streams with greater cover of buildings in the 100 m buffer. Highest abundance was also found in streams with greater dissolved oxygen and larger areas of dams in the 250 m buffer, but it was lower in streams with larger areas of forests in the 500 m buffer. The presence of agriculture in the immediate surroundings of streams can increase richness of amphibians due to the occupation by open‐habitat species. On the other hand, the low number of rheophilic species suggests that soil use may restrict permanence of these species. Abstract in Portuguese is available with online material.  相似文献   

18.
Aim The nestedness temperature of presence–absence matrices is currently calculated with the nestedness temperature calculator (NTC). In the algorithm implemented by the NTC: (1) the line of perfect order is not uniquely defined, (2) rows and columns are reordered in such a way that the packed matrix is not the one with the lowest temperature, and (3) the null model used to determine the probabilities of finding random matrices with the same or lower temperature is not adequate for most applications. We develop a new algorithm, BINMATNEST (binary matrix nestedness temperature calculator), that overcomes these difficulties. Methods BINMATNEST implements a line of perfect order that is uniquely defined, uses genetic algorithms to determine the reordering of rows and columns that leads to minimum matrix temperature, and provides three alternative null models to calculate the statistical significance of matrix temperature. Results The NTC performs poorly when the input matrix has checkerboard patterns. The more efficient packing of BINMATNEST translates into matrix temperatures that are lower than those computed with the NTC. The null model implemented in the NTC is associated with a large frequency of type I error, while the other null models implemented in BINMATNEST (null models 2 and 3) are conservative. Overall, null model 3 provides the best performance. The nestedness temperature of a matrix is affected by its size and fill, but the probability that such a temperature is obtained by chance is not. BINMATNEST reorders the input matrix in such a way that, if fragment size/isolation plays a role in determining community structure, there will be a significant rank correlation between the size/isolation of the fragments and the way that they are ordered in the packed matrix. Main conclusions The nestedness temperature of presence–absence matrices should not be calculated with the NTC. The algorithm implemented by BINMATNEST is more robust, allowing for across‐study comparisons of the extent to which the nestedness of communities departs from randomness. The sequence in which BINMATNEST reorders habitat fragments provides information about the causal role of immigration and extinction in shaping the community under study.  相似文献   

19.
Dispersal is a fundamental attribute of species in nature and shapes population dynamics, evolutionary trajectories and genetic variation across spatial and temporal scales. It is increasingly clear that landscape features have large impacts on dispersal patterns. Thus, understanding how individuals and species move through landscapes is essential for predicting impacts of landscape alterations. Information on dispersal patterns, however, is lacking for many taxa, particularly reptiles. Eastern foxsnakes (Mintoinus gloydi) are marsh and prairie specialists that avoid agricultural fields, but they have persisted across a fragmented region in southwestern Ontario and northern Ohio. Here, we combined habitat suitability modelling with population genetic analyses to infer how foxsnakes disperse through a habitat mosaic of natural and altered landscape features. Boundary regions between the eight genetic clusters, identified through assignment tests, were comprised of low suitability habitat (e.g. agricultural fields). Island populations were grouped into a single genetic cluster, and comparatively low F(ST) values between island and mainland populations suggest open water presents less of a barrier than nonsuitable terrestrial habitat. Isolation by resistance and least-cost path analysis produced similar results with matrices of pairwise individual genetic distance significantly more correlated to matrices of resistance values derived from habitat suitability than models with an undifferentiated landscape. Spatial autocorrelation results matched better with assignment results when incorporating resistance values rather than straight-line distances. All analyses used in our study produced similar results suggesting that habitat degradation limits dispersal for foxsnakes, which has had a strong effect on the genetic population structure across this region.  相似文献   

20.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号