首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three intracellular proteinases termed A, B and C were purified to homogeneity from the unicellular form of the yeast Candida albicans. Enzyme A is an aspartic proteinase that acts on a variety of proteins. Its optimal pH is around 5 and it is displaced to 6.5 by KSCN. It is not significantly inhibited by PMSF, TLCK (Tos-Lys-CHCl2) or soybean trypsin inhibitor but it is inhibited by pepstatin. Its molecular weight is 60 000. Enzyme B is a dipeptidase that acts on esters or on dipeptides without blocks in either the carboxyl or amino ends. Its pH optimum is around 7.5 and the molecular weight is 57 000. It is inhibited by PMSF, TLCK and DANME (N2Ac-Nle-OMe). Proteinase C is an aminopeptidase with an optimum pH around 8. Its molecular weight was 67 000 when determined by SDS gel electrophoresis and 243 000 when determined by gel filtration. It is active towards dipeptides in which at least one amino acid is apolar and is not active when the N-terminal amino acid is blocked. It is inhibited by EDTA or o-phenanthroline and activated by several divalent cations.  相似文献   

2.
Membrane ghost preparations of Escherichia coli K-12 obtained by osmotic lysis of lysozyme-induced spheroplasts were found to possess both Mg(++)- and Ca(++)-activated adenosine 5'-triphosphatase (ATPase, EC 3.6.1.3) activities. Maximal activities of 1.0 to 1.5 mumoles of orthophosphate released per min per mg of protein were obtained at pH 9.0 with a molar Mg(++) to adenosine 5'triphosphate (ATP) ratio of 2:5 and at pH 9.9 with a molar Ca(++) to ATP ratio of 1:5. These ATPase activities were not altered by ouabain, fluoride, N-ethylmaleimide, 2,4-dinitrophenol, cyanide, or dithionite, but were inhibited by low concentrations of azide, p-chloromercuribenzoate, and pentachlorophenol. Mg(++) ATPase was more susceptible to inhibition by azide than was Ca(++) ATPase. Fifty per cent inactivation of both activities was observed when membrane ghost preparations were preincubated at 66 C for 10 min. The Mg(++) and Ca(++) ATPase activities of these preparations were not additive, but did respond independently to inhibition by monovalent cations. Ca(++) ATPase was found to be very sensitive to inhibition by K(+), Na(+), Li(+), Rb(+), and Cs(+); Mg(++) ATPase was relatively insensitive to these ions. One possible interpretation of the results presented in this paper is that the membrane of E. coli possesses an ATPase which is activated by either Mg(++) or Ca(++) and that activation by Ca(++) increases the susceptibility of this enzyme to inhibition by monovalent cations. Increased susceptibility of E. coli membrane ATPase to inhibition by monovalent cations such as Na(+) and K(+) as a consequence of Ca(++) activation could represent a regulatory mechanism.  相似文献   

3.
Studies of the organic anion transporters (Oats) have focused mainly on their interactions with organic anionic substrates. However, as suggested when Oat1 was originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471–6478), since the Oats share close homology with organic cation transporters (Octs), it is possible that Oats interact with cations as well. We now show that mouse Oat1 (mOat1) and mOat3 and, to a lesser degree, mOat6 bind a number of “prototypical” Oct substrates, including 1-methyl-4-phenylpyridinium. In addition to oocyte expression assays, we have tested binding of organic cations to Oat1 and Oat3 in ex vivo assays by analyzing interactions in kidney organ cultures deficient in Oat1 and Oat3. We also demonstrate that mOat3 transports organic cations such as 1-methyl-4-phenylpyridinium and cimetidine. A pharmacophore based on the binding affinities of the tested organic cations for Oat3 was generated. Using this pharmacophore, we screened a chemical library and were able to identify novel cationic compounds that bound to Oat1 and Oat3. These compounds bound Oat3 with an affinity higher than the highest affinity compounds in the original set of prototypical Oct substrates. Thus, whereas Oat1, Oat3, and Oat6 appear to function largely in organic anion transport, they also bind and transport some organic cations. These findings could be of clinical significance, since drugs and metabolites that under normal physiological conditions do not bind to the Oats may undergo changes in charge and become Oat substrates during pathologic conditions wherein significant variations in body fluid pH occur.  相似文献   

4.
Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H+ ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores.  相似文献   

5.
A rapid and effective method was devised for the reduction of activity of reduced nicotinamide adenine dinucleotide (NADH) oxidase in crude extracts of Bacillus cereus T. The addition of 25 mumoles of MnCl(2) per mg of extract protein in tris(hydroxymethyl)aminomethane-hydrochloride buffer reduced NADH oxidase activity by 90% within 1 min, and this reduction was independent of pH between pH 7.0 and 8.5. Other divalent cations such as Mg(2+), Ba(2+), Ca(2+), and Co(2+) also reduced NADH oxidase activity, but monovalent cations such as Na(+) and K(+) were ineffective. The reduction of NADH oxidase activity by divalent cations was presumably due to the removal of an essential flavine cofactor, since the addition of riboflavine and flavine mononucleotide to treated extracts was shown to completely restore NADH oxidase activity. The specificity, convenience, and efficiency of the procedure were shown to be applicable to crude extracts of B. megaterium and B. subtilis and should facilitate spectrophotometric measurements of nicotinamide adenine dinucleotide-dependent dehydrogenases in these and other microorganisms.  相似文献   

6.
Rises in intracellular calcium cause several events of physiological significance, including the regulated release of neuronal transmitters. In this study, the effects of divalent cations on the structural organization of cytomatrix in presynaptic terminals was examined. [35S]Methionine-radiolabeled guinea pig retinal ganglion cell cytomatrix proteins were axonally transported [in slow component b (SCb) of axonal transport] to the neuron terminals in the superior colliculus. When the peak of radiolabeled cytomatrix proteins reached the terminals, synaptosomes containing the radiolabeled cytomatrix proteins were prepared. Approximately 40% of each SCb protein was soluble after hypoosmotic lysis of the radiolabeled synaptosomes in the presence of divalent cation chelators. Lysis of synaptosomes in the presence of calcium ions over a range of concentrations, however, caused a dramatic decrease in solubility of the presynaptic SCb proteins. The cytoplasmic effects may result from a calcium-dependent condensation of cytoplasm around presynaptic terminal membrane systems. There are two major presynaptic SCb proteins (at 60 and 35 kDa), that exhibited exceptional behavior: they remained as soluble in the presence of calcium as under control conditions, suggesting that they were relatively unaffected by the mechanism causing the decrease in SCb protein solubility. Also examined were the effects of other alkaline earth and transition metal divalent cations on the presynaptic SCb proteins.  相似文献   

7.
Many plants are exposed to prolonged episodes of anthropogenic acid precipitation with pH values of 4 or less, but there is little evidence of widespread direct damage to the plant cells. Acids appear to permeate leaf cuticle via charged pores, which act as a fixed buffer that delays but does not stop acid movement. We investigated the effect of cations on the movement of protons through astomatous isolated leaf cuticles of pear (Pyrus communis L.) and rough lemon (Citrus limon [L.] Burm. fils cv Ponderosa). Chloride salt solutions of Na, K, Ca, Cd, Mg, Gd, or Y in a diffusion apparatus were applied to the morphological inner surface of the cuticle, while the outer surface faced a large volume of pH 3 or 4 sulfuric acid. Effective permeability was calculated from the change in the pH of the inner solution as measured with a pH microelectrode. Monovalent cations caused either no change (pear) or promotion (rough lemon) of proton movement. Divalent cations reduced proton movement in a concentration-dependent manner (both species), whereas trivalent cations (rough lemon only) caused the effective permeability to decrease to near zero. Inhibition by 10 mM CaCl2 was reversed with water. The effects of these cations on the permeability of cuticles to protons was used to elucidate mechanisms by which cations can protect leaves from acid precipitation in nature.  相似文献   

8.
Kinetic analysis of the initial ingestion rate of albumin-coated paraffin oil particles by human granulocytes and rabbit alveolar macrophages was undertaken to study the mechanism of action of cations and of heat-labile opsonin on engulfment. The rate of uptake of the particles was stimulated by Ca++, Mg++, Mn++, or Co++. At high concentrations (> 20 mM) Ca++ and Mg++ inhibited the rate of ingestion. Treatment of the particles with fresh serum (heat-labile opsonin) also stimulated the rate of ingestion. 125I-labeled C3 was bound to the particles during opsonization. C3-deficient human serum lacked opsonic activity, which was restored by addition of purified C3. Normal, C2-deficient, and hereditary angioneurotic edema sera had equivalent opsonic activity. The serum opsonic activity thus involved C3 fixation to the particles by means of the properdin system. Although Mg++ and heat-labile opsonin both accelerated the maximal rates of ingestion of the particles, neither altered the particle concentrations associated with one-half maximal ingestion rates. Opsonization of the particles markedly diminished the concentrations of divalent cations causing both stimulatory and inhibitory effects on ingestion rates and altered the shapes of the cation activation curves. 45Ca was not bound to the particles during opsonization. The results are consistent with a mechanism whereby divalent cations and heat-labile opsonin activate ingestion by stimulating the work of engulfment rather than by merely enhancing cell-particle affinity, and whereby heat-labile opsonin acts by potentiating the effects of divalent cations.  相似文献   

9.
The factors which modify the action of chelating agents in dissolvingthe intercellular cement in plant tissue have been investigated.The action was assessed by determining the degree of separationof cells in treated pea root tips. Greatly increased separation was observed when heavy metal chelatingagents were combined with EDTA (which, in addition to heavymetals, chelates Ca) indicating that two types of cations areinvolved in stabilizing the cement. After the cells had beenseparated by removal of the cations they could be recementedby treatment with divalent cations. In low concentrations onlycertain combinations of cations were effective, again pointingto the presence of more than one type of cation in the cement.Proteolytic enzymes or denaturing agents eliminated this capacityto recement. Pretreatment with divalent cations enhanced subsequentseparation (in EDTA solution). This effect could be counteredby treatment with monovalent cations. Pretreatment in buffers covering a wide range of pH resultedin increased separation both at pH 3 and at pH 11, suggestingan ampholytic component in the cement. Urea, when applied as a pretreatment, only enhanced separationwhen in high concentration. This effect was influenced by ionicstrength. When applied in combination with EDTA, urea producedan optimum effect at low concentration (0.125 M.). Pretreatmentin hot water also enhanced subsequent separation in EDTA solutions.High concentrations of KCl countered this effect. These findingspoint to the importance of H bonds in the intercellular cement.Thioglycollic acid, applied either as pretreatment or simultaneouslywith EDTA, lowered the EDTA concentration necessary to achieveseparation, suggesting the presence of S—S bridges. The curve relating the effect of pretreatment at varying temperatures,either in H2O or in apolar solvents, to temperature, showeda sharp break, suggesting that the melting-point of an organizedgel might be involved. The conclusion is reached that the intercellular cement canbe regarded as an oriented gel structure containing proteinmolecules cross-linked by two types of metallic ion, the metalliccross linkage being chelate in character.  相似文献   

10.
Certain amines known to be concentrated in lysosomes, termed "lysosomotropic amines," cause the formation of lysosomal vacuoles. A cell-free system was established to examine the effects of basic substances and acidic ionophores. In this system, the drugs not only increased the internal pH, but also caused a disruption of lysosomes. The osmotic swelling of lysosomes induced by protonated bases or cations for particular ionophores, which had accumulated within lysosomes driven by the proton pump, caused the osmotic lysis of lysosomes. The lysosomal disruption was inhibited upon the addition of the cytosol fraction. This phenomenon provides an in vitro system for studying the osmo-regulation and intercellular dynamics of the lysosomal system, including membrane fusion. The lysosomal stabilization factor was purified from the cytosol fraction and identified as ATP-stimulated glucocorticoid receptor translocation promoter (ASTP).  相似文献   

11.
The effects of five lysosomotropic amines on the growth of Swiss 3T3 fibroblasts were measured and compared with effects on intravesicular pH. Tributylamine and benzylamine, amines that affect intravesicular pH without causing vacuolation, were found to inhibit cell growth to a similar extent as vacuologenic amines previously tested. Excellent correlation between the half-maximal concentrations for the growth and pH effects were found for tributylamine, benzylamine, chloroquine, and ammonium chloride. The results suggest that growth inhibition by these amines is a direct result of their effects on pH and not due to other effects (such as vacuolation). In contrast, a 100-fold difference in the half-maximal concentrations was found for methylamine, suggesting that methylamine inhibits growth by a mechanism unrelated to pH.  相似文献   

12.
Cell killing by lysosomotropic detergents   总被引:8,自引:4,他引:4       下载免费PDF全文
We have studied the mechanism by which lysosomotropic detergents kill baby hamster kidney cells. Lysosomotropic detergents are lysosomotropic amines (compounds with pK between 5 and 9, such as imidazole or morpholine) containing straight-chain hydrocarbon "tails" of 9-14 carbon atoms (Firestone, R. A., J. M. Pisano, and R. J. Bonney. 1979, J. Med. Chem., 22:1130-1133). Using lucifer yellow CH as a specific fluorescent label for lysosomes, it was shown by light microscopy that N-dodecyl (C12)-imidazole acted rapidly to damage lysosomes, causing leakage of dye into the cytoplasm. This was followed at later times by vacuolization, blebbing of the plasma membrane, cell rounding, and cell death. 3H-labeled C12-imidazole rapidly diffused into cells where much of it was trapped in lysosomes as shown by its co-migration with lysosomes in Percoll gradients. Cells preincubated with C12-imidazole released it slowly into C12-imidazole-free media, permitting the cells to be killed by the preincubation dose. Cell killing by the lysosomotropic detergents exhibited strongly sigmoidal dose-response curves. The sensitivity of baby hamster kidney cells to killing by C12-imidazole was density dependent, the cells being most sensitive at lowest cell densities, and relatively resistant at confluence. The amount of 3H-C12-imidazole taken up by the cells was also density dependent, with highest specific uptake occurring at the lowest cell density. A rise in lysosomal pH, measured in fluoresceinated dextran-labeled cells, commenced immediately upon addition of C12-imidazole to cells, and continued for over an hour. This was followed after a lag of 1-2 h by inhibition of protein and RNA synthesis and by lactate dehydrogenase release. Ionophores or lysosomotropic amines, such as methylamine, that raise intralysosomal pH provided substantial protection of the cells from killing by lysosomotropic detergents. These findings provide strong support for the idea that lysosomotropic detergents kill cells by disrupting lysosomes from within.  相似文献   

13.
Extracellular pH markedly influences the ability of yeast cells to discriminate between K+ and Na+, with K+ favored to a greater degree at low pH. Studies of the kinetics of uptake of individual alkali metal cations by fermenting yeast indicate three zones relative to pH. Between pH 6 and 8, H+ has no effect. Below pH 4, H+ competitively inhibits the transport of each cation. Between pH 4 and 6, H+ acts kinetically as a predominantly non-competitive inhibitor. Both effects can be reversed by increasing the concentrations of cations. However, the concentrations required to reverse the competitive effect are considerably lower than those required to reverse the apparently non-competitive effect. It is suggested that H+ and the alkali metal cations can combine with two sites, a transport or carrier site, and a second, non-transporting site that influences the maximal rate of transport. Because the non-competitive inhibitory effect of H+ is considerably greater on the other cations than on K+, the discrimination in favor of K+ is increased severalfold at low pH, beyond that predicted on the basis of the relative affinities for the transport site.  相似文献   

14.
The effects of brefeldin A on intracellular transport and posttranslational modification of complement C3 (C3) were studied in primary culture of rat hepatocytes. In the control culture C3 was synthesized as a precursor (pro-C3), which was processed to the mature form with alpha- and beta-subunits before its discharge into the medium. In the presence of brefeldin A the secretion of C3 was strongly blocked, resulting in accumulation of pro-C3. However, after a prolonged interval the mature form of C3 was finally secreted. The results indicate that brefeldin A impedes translocation of pro-C3 to the Golgi complex where pro-C3 is converted to the mature form, but not its proteolytic processing, in contrast to the effects of monensin and weakly basic amines.  相似文献   

15.
Effects of microinjected cations on the early events of fertilization were examined using eggs of Oryzias latipes . Microinjection of either Ca2+, Ba2+ or Sr2+ into the thin cortical cytoplasm induced breakdown of cortical alveoli (vesicles) (CABD) under Ca-Mg-free conditions, but microinjection of Mg2+, Mn2+ or Co2+ prevented CABD at the injected region when the eggs were inseminated in regular saline. Under Ca-Mg-free conditions, CABD could also be induced by microinjection of various solutions (NaCl, choline chloride, sucrose, pH buffer) without any divalent cations or ionophore A23187. Ca2+ microinjected into the cortical cytoplasm did not play a role in sperm penetration. Upon microinjection with either Ca2+, Mg2+ or K+, the resting membrane potential leakage was transiently observed. However, depolarization of the membrane followed by slow hyperpolarization was observed only upon microinjection of Ca2+. From these experiments, it was inferred that microinjected divalent cations such as Ca2+, Ba2+ or Sr2+ do not act directly upon the cortical alveolus membrane, but trigger the induction of CABD via depolarization of the membrne and increase in intracellular Ca2+.  相似文献   

16.
Interactions between the nicotinic acetylcholine receptor (nAChR) and phosphatidic acid (PA) are bidirectional in that membranes containing PA are effective at stabilizing an agonist-responsive nAChR, whereas incorporation of the nAChR into the same membranes leads to a substantial increase in lipid lateral packing density. A previous study suggested that the ability of PA to adopt a dianionic ionization state is key. We monitored the ionization state of PA in both reconstituted and protein-free membranes. In model membranes composed of PA and 3:2 (mol/mol) phosphatidylcholine (PC)/PA, the monoanionic-to-dianionic transition of PA was detected with a pKa of 8.7 and 6.5, respectively. In the reconstituted 3:2 PC/PA membranes, however, PA was stabilized in a monoanionic state at pH values up to 10. Although dianionic PA does not play a role in nAChR function, we found that both the stabilization of monoanionic PA and the concentration of other cations at the bilayer surface can account for changes in bilayer physical properties that are observed upon incorporation of the nAChR into 3:2 PC/PA membranes. A nAChR-induced concentration of cations at the bilayer surface likely mediates interactions between the nAChR and the anionic lipids in its membrane environment.  相似文献   

17.
Potentiation of TRPC5 by protons   总被引:2,自引:0,他引:2  
Mammalian members of the classical transient receptor potential channel subfamily (TRPC) are Ca(2+)-permeable cation channels involved in receptor-mediated increases in intracellular Ca(2+). TRPC4 and TRPC5 form a group within the TRPC subfamily and are activated in a phospholipase C-dependent manner by an unidentified messenger. Unlike most other Ca(2+)-permeable channels, TRPC4 and -5 are potentiated by micromolar concentrations of La(3+) and Gd(3+). This effect results from an action of the cations at two glutamate residues accessible from the extracellular solution. Here, we show that TRPC4 and -5 respond to changes in extracellular pH. Lowering the pH increased both G protein-activated and spontaneous TRPC5 currents. Both effects were already observed with small reductions in pH (from 7.4 to 7.0) and increased up to pH 6.5. TRPC4 was also potentiated by decreases in pH, whereas TRPC6 was only inhibited, with a pIC(50) of 5.7. Mutation of the glutamate residues responsible for lanthanoid sensitivity of TRPC5 (E543Q and E595Q) modified the potentiation of TRPC5 by acid. Further evidence for a similarity in the actions of lanthanoids and H(+) on TRPC5 is the reduction in single channel conductance and dramatic increase in channel open probability in the presence of either H(+) or Gd(3+) that leads to larger integral currents. In conclusion, the high sensitivity of TRPC5 to H(+) indicates that, in addition to regulation by phospholipase C and other factors, the channel may act as a sensor of pH that links decreases in extracellular pH to Ca(2+) entry and depolarization.  相似文献   

18.
ROMK channels are regulated by internal pH (pH(i)) and extracellular K(+) (K(+)(o)). The mechanisms underlying this regulation were studied in these channels after expression in Xenopus oocytes. Replacement of the COOH-terminal portion of ROMK2 (Kir1.1b) with the corresponding region of the pH-insensitive channel IRK1 (Kir 2.1) produced a chimeric channel (termed C13) with enhanced sensitivity to inhibition by intracellular H(+), increasing the apparent pKa for inhibition by approximately 0.9 pH units. Three amino acid substitutions at the COOH-terminal end of the second transmembrane helix (I159V, L160M, and I163M) accounted for these effects. These substitutions also made the channels more sensitive to reduction in K(+)(o), consistent with coupling between the responses to pH(i) and K(+)(o). The ion selectivity sequence of the activation of the channel by cations was K(+) congruent with Rb(+) > NH(4)(+) > Na(+), similar to that for ion permeability, suggesting an interaction with the selectivity filter. We tested a model of coupling in which a pH-sensitive gate can close the pore from the inside, preventing access of K(+) from the cytoplasm and increasing sensitivity of the selectivity filter to removal of K(+)(o). We mimicked closure of this gate using positive membrane potentials to elicit block by intracellular cations. With K(+)(o) between 10 and 110 mM, this resulted in a slow, reversible decrease in conductance. However, additional channel constructs, in which inward rectification was maintained but the pH sensor was abolished, failed to respond to voltage under the same conditions. This indicates that blocking access of intracellular K(+) to the selectivity filter cannot account for coupling. The C13 chimera was 10 times more sensitive to extracellular Ba(2+) block than was ROMK2, indicating that changes in the COOH terminus affect ion binding to the outer part of the pore. This effect correlated with the sensitivity to inactivation by H(+). We conclude that decreasing pH(I) increases the sensitivity of ROMK2 channels to K(+)(o) by altering the properties of the selectivity filter.  相似文献   

19.
Size-dependent hyaluronate degradation by cultured cells   总被引:3,自引:0,他引:3  
Hyaluronate degradation was examined in cultures of vascular wall cells (bovine aortic endothelial cells, rat aortic smooth muscle cells) and in nonvascular cells (chick embryo fibroblasts). The three cell types examined all produced hyaluronidase activity in culture which had a strict acidic pH requirement for activity. This suggested that the enzyme was active only within an acidic intracellular compartment and therefore that hyaluronate degradation occurred at an intracellular site. This was supported by the observation that the presence of hyaluronidase activity alone was not sufficient to ensure degradation of extracellular hyaluronate. Rather, the key limiting factor in this process appeared to be hyaluronate internalization, and this was found to be hyaluronate size-dependent and to a degree, cell-specific. The relationship of these results to morphogenesis and tissue remodeling is discussed.  相似文献   

20.
We have reviewed the evidence that amines accumulate in intracellular vesicles of low pH, such as lysosomes and endosomes. There is consequent elevation of intravesicular pH, and inhibition of receptor-ligand dissociation often results from this pH change. We have argued that the capacity for fusion of such vesicles is also reduced by the high pH. We suggest that the variety of effects of amines on membrane flow and macromolecular transport we describe are at least partly due to such reduced fusion (Figs. 1 and 2). We propose that an internal low pH may facilitate heterologous vesicle-vesicle and vesicle-plasma membrane fusion. There is some evidence that clathrin can accelerate phospholipid vesicle fusion in vitro at low pH (Blumenthal et al., 1983) but no direct evidence on the role of intravesicular pH. This idea is consistent not only with the preceding discussion, but also with the fact that the intracellular membrane-bound compartments least involved in fusion events (e.g. mitochondria) are of neutral or alkaline internal pH. Membrane fusion is certainly required for the formation of vesicles at the periphery of the Golgi apparatus, and possibly earlier in the transport and processing of biosynthetic products in the Golgi (Bergeron et al., 1982). Thus the accumulation of amines in the Golgi may be responsible for several effects on the flow of macromolecules along their translocation pathways. The status of the plasma membrane in this view is complex. It might be argued that the pH dictating the fusion step in endocytosis is that of the extracellular fluid, in which case the inhibitory effects of amines on this process are not explained. However, the rapidity of acidification of the newly formed endocytic vesicles allows the possibility that plasma membrane invaginations might temporarily sequester areas which are of lower pH than that of the bulk extracellular fluid even before fusion, since the proton pumping enzyme(s) are probably present on the plasma membrane. Were this the case, then an acid pH could again be a factor determining membrane fusion at the plasma membrane. The inhibition of endocytosis by weak bases thus may again reflect elevation of pH in a sequestered compartment. From the data on the dependence of response on the concentration of amines, we anticipate that most responses involving membrane flow will be biphasic, with inhibitory effects at low amine concentration, giving way to stimulatory ones at higher concentrations. We suggest that the reported dichotomy between different amines in intracellular membrane fusion systems (D'Arcy Hart, 1982) may result from this concentration dependence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号