首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
The gene (crc) responsible for catabolite repression control in Pseudomonas aeruginosa has been cloned and sequenced. Flanking the crc gene are genes encoding orotate phosphoribosyl transferase (pyrE) and RNase PH (rph). New crc mutants were constructed by disruption of the wild-type crc gene. The crc gene encodes an open reading frame of 259 amino acids with homology to the apurinic/apyrimidinic endonuclease family of DNA repair enzymes. However, crc mutants do not have a DNA repair phenotype, nor can the crc gene complement Escherichia coli DNA repair-deficient strains. The crc gene product was overexpressed in both P. aeruginosa and in E. coli, and the Crc protein was purified from both. The purified Crc proteins show neither apurinic/apyrimidinic endonuclease nor exonuclease activity. Antibody to the purified Crc protein reacted with proteins of similar size in crude extracts from Pseudomonas putida and Pseudomonas fluorescens, suggesting a common mechanism of catabolite repression in these three species.  相似文献   

5.
6.
The Crc protein is involved in the repression of several catabolic pathways for the assimilation of some sugars, nitrogenated compounds, and hydrocarbons in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolic repression). Crc appears to be a component of a signal transduction pathway modulating carbon metabolism in pseudomonads, although its mode of action is unknown. To better understand the role of Crc, the proteome profile of two otherwise isogenic P. putida strains containing either a wild-type or an inactivated crc allele was compared. The results showed that Crc is involved in the catabolic repression of the hpd and hmgA genes from the homogentisate pathway, one of the central catabolic pathways for aromatic compounds that is used to assimilate intermediates derived from the oxidation of phenylalanine, tyrosine, and several aromatic hydrocarbons. This led us to analyze whether Crc also regulates the expression of the other central catabolic pathways for aromatic compounds present in P. putida. It was found that genes required to assimilate benzoate through the catechol pathway (benA and catBCA) and 4-OH-benzoate through the protocatechuate pathway (pobA and pcaHG) are also negatively modulated by Crc. However, the pathway for phenylacetate appeared to be unaffected by Crc. These results expand the influence of Crc to pathways used to assimilate several aromatic compounds, which highlights its importance as a master regulator of carbon metabolism in P. putida.  相似文献   

7.
8.
9.
Expression of the genes of the alkane degradation pathway encoded in the Pseudomonas putida OCT plasmid are subject to negative and dominant global control depending on the carbon source used and on the physiological status of the cell. We investigated the signals responsible for this control in chemostat cultures under conditions of nutrient or oxygen limitation. Our results show that this global control is not related to the growth rate and responds to two different signals. One signal is the concentration of the carbon source that generates the repressing effect (true catabolite repression control). The second signal is influenced by the level of expression of the cytochome o ubiquinol oxidase, which in turn depends on factors such as oxygen availability or the carbon source used. Since under carbon limitation conditions the first signal is relieved but the second signal is not, we propose that modulation mediated by the cytochrome o ubiquinol oxidase is not classical catabolite repression control but rather a more general physiological control mechanism. The two signals have an additive, but independent, effect, inhibiting induction of the alkane degradation pathway.  相似文献   

10.
11.
12.
The Pseudomonas putida KT2440 TOL upper pathway is repressed under nonlimiting conditions in cells growing in chemostat with succinate as a carbon source. We show that the ptsN gene product IIA(Ntr) participates in this repression. Crc, involved in yeast extract-dependent repression in batch cultures, did not influence expression when cells were growing in a chemostat with succinate at maximum rate.  相似文献   

13.
14.
15.
16.
The amiE gene encodes an aliphatic amidase capable of converting fluoroacetamide to the toxic compound fluoroacetate and is one of many genes whose expression is subject to catabolite repression control in Pseudomonas aeruginosa. The protein product of the crc gene, Crc, is required for repression of amiE and most other genes subject to catabolite repression control in this bacterium. When grown in a carbon source such as succinate, wild-type P. aeruginosa is insensitive to fluoroacetamide (due to repression of amiE expression). In contrast, mutants harboring the crc-10 null allele cannot grow in the presence of fluoroacetamide (due to lack of repression of amiE). Selection for succinate-dependent, fluoroacetamide-resistant derivatives of the crc-10 mutant yielded three independent pseudorevertants containing suppressors that restored a degree of catabolite repression control. Synthesis of Crc protein was not reestablished in these pseudorevertants. All three suppressors of crc-10 were extragenic, and all three also suppressed a Delta crc::tetA allele. In each of the three pseudorevertants, catabolite repression control of amidase expression was restored. Catabolite repression control of mannitol dehydrogenase production was also restored in two of the three isolates. None of the suppressors restored repression of glucose-6-phosphate dehydrogenase or pyocyanin production.  相似文献   

17.
18.
19.
Mutants which are defective in catabolite repression control (CRC) of multiple independently regulated catabolic pathways have been previously described. The mutations were mapped at 11 min on the Pseudomonas aeruginosa chromosome and designated crc. This report describes the cloning of a gene which restores normal CRC to these Crc- mutants in trans. The gene expressing this CRC activity was subcloned on a 2-kb piece of DNA. When this 2-kb fragment was placed in a plasmid behind a phage T7 promoter and transcribed by T7 RNA polymerase, a soluble protein with a molecular weight (MW) of about 30,000 was produced in Escherichia coli. A soluble protein of identical size was overproduced in a Crc- mutant when it contained the 2-kb fragment on a multicopy plasmid. This protein could not be detected in the mutant containing the vector without the 2-kb insert or with no plasmid. When a 0.3-kb AccI fragment was removed from the crc gene and replaced with a kanamycin resistance cassette, the interrupted crc gene no longer restored CRC to the mutant, and the mutant containing the interrupted gene no longer overproduced the 30,000-MW protein. Pools of intracellular cyclic AMP and the activities of adenylate cyclase and phosphodiesterase were measured in mutant and wild-type strains with and without a plasmid containing the crc gene. No consistent differences between any strains were found in any case. These results provide original evidence for a 30,000-MW protein encoded by crc+ that is required for wild-type CRC in P. aeruginosa and confirms earlier reports that the mode of CRC is cyclic AMP independent in this bacterium.  相似文献   

20.
The cellular levels of the alternative sigma factor sigma(54) of Pseudomonas putida have been examined in a variety of growth stages and culture conditions with a single-chain Fv antibody tailored for detection of scarce proteins. The levels of sigma(54) were also monitored in P. putida strains with knockout mutations in ptsO or ptsN, known to be required for the C-source control of the sigma(54)-dependent Pu promoter of the TOL plasmid. Our results show that approximately 80 +/- 26 molecules of sigma(54) exist per cell. Unlike that in relatives of Pseudomonas (e.g., Caulobacter), where fluctuations of sigma(54) determine adaptation and differentiation when cells face starvation, sigma(54) in P. putida remains unexpectedly constant at different growth stages, in nitrogen starvation and C-source repression conditions, and in the ptsO and ptsN mutant strains analyzed. The number of sigma(54) molecules per cell in P. putida is barely above the predicted number of sigma(54)-dependent promoters. These figures impose a framework on the mechanism by which Pu (and other sigma(54)-dependent systems) may become amenable to physiological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号