首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene transfer technique, and we analyzed the effect of overexpression of a wild-type protein-tyrosine phosphatase-1B (PTP1B) on insulin signaling in both L6 myocytes and Fao cells. In both cells, PTP1B overexpression blocked insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1 by more than 70% and resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase and Akt phosphorylation as well as mitogen-activated protein kinase phosphorylation. Moreover, insulin-stimulated glycogen synthesis was also inhibited by PTP1B overexpression in both cells. These effects were specific for insulin signaling, because platelet-derived growth factor (PDGF)-stimulated PDGF receptor tyrosine phosphorylation and Akt phosphorylation were not inhibited by PTP1B overexpression. The present findings demonstrate that PTP1B negatively regulates insulin signaling in L6 and Fao cells, suggesting that PTP1B plays an important role in insulin resistance in muscle and liver.  相似文献   

2.
PTP1B is a protein tyrosine phosphatase that negatively regulates insulin sensitivity by dephosphorylating the insulin receptor. Akt is a ser/thr kinase effector of insulin signaling that phosphorylates substrates at the consensus motif RXRXXS/T. Interestingly, PTP1B contains this motif (RYRDVS(50)), and wild-type PTP1B (but not mutants with substitutions for Ser(50)) was significantly phosphorylated by Akt in vitro. To determine whether PTP1B is a substrate for Akt in intact cells, NIH-3T3(IR) cells transfected with either wild-type PTP1B or PTP1B-S50A were labeled with [(32)P]-orthophosphate. Insulin stimulation caused a significant increase in phosphorylation of wild-type PTP1B that could be blocked by pretreatment of cells with wortmannin or cotransfection of a dominant inhibitory Akt mutant. Similar results were observed with endogenous PTP1B in untransfected HepG2 cells. Cotransfection of constitutively active Akt caused robust phosphorylation of wild-type PTP1B both in the absence and presence of insulin. By contrast, PTP1B-S50A did not undergo phosphorylation in response to insulin. We tested the functional significance of phosphorylation at Ser(50) by evaluating insulin receptor autophosphorylation in transfected Cos-7 cells. Insulin treatment caused robust receptor autophosphorylation that could be substantially reduced by coexpression of wild-type PTP1B. Similar results were obtained with coexpression of PTP1B-S50A. However, under the same conditions, PTP1B-S50D had an impaired ability to dephosphorylate the insulin receptor. Moreover, cotransfection of constitutively active Akt significantly inhibited the ability of wild-type PTP1B, but not PTP1B-S50A, to dephosphorylate the insulin receptor. We conclude that PTP1B is a novel substrate for Akt and that phosphorylation of PTP1B by Akt at Ser(50) may negatively modulate its phosphatase activity creating a positive feedback mechanism for insulin signaling.  相似文献   

3.
The dynamics of the interaction of the insulin receptor with a substrate-trapping mutant of protein-tyrosine phosphatase 1B (PTP1B) were monitored in living human embryonic kidney cells using bioluminescence resonance energy transfer (BRET). Insulin dose-dependently stimulates this interaction, which could be followed in real time for more than 30 minutes. The effect of insulin on the BRET signal could be detected at early time-points (30 seconds), suggesting that in intact cells the tyrosine-kinase activity of the insulin receptor is tightly controlled by PTP1B. Interestingly, the basal (insulin-independent) interaction of the insulin receptor with PTP1B was much weaker with a soluble form of the tyrosine-phosphatase than with the endoplasmic reticulum (ER)-targeted form. Inhibition of insulin-receptor processing using tunicamycin suggests that the basal interaction occurs during insulin-receptor biosynthesis in the ER. Therefore, localization of PTP1B in this compartment might be important for the regulation of insulin receptors during their biosynthesis.  相似文献   

4.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

5.
Regulation of the steady-state tyrosine phosphorylation of the insulin receptor and its postreceptor substrates are essential determinants of insulin signal transduction. However, little is known regarding the molecular interactions that influence the balance of these processes, especially the phosphorylation state of postinsulin receptor substrates, such as insulin receptor substrate-1 (IRS-1). The specific activity of four candidate protein-tyrosine phosphatases (protein-tyrosine phosphatase 1B (PTP1B), SH2 domain-containing PTPase-2 (SHP-2), leukocyte common antigen-related (LAR), and leukocyte antigen-related phosphatase) (LRP) toward IRS-1 dephosphorylation was studied using recombinant proteins in vitro. PTP1B exhibited the highest specific activity (percentage dephosphorylated per microg per min), and the enzyme activities varied over a range of 5.5 x 10(3). When evaluated as a ratio of activity versus IRS-1 to that versus p-nitrophenyl phosphate, PTP1B remained significantly more active by 3.1-293-fold, respectively. Overlay blots with recombinant Src homology 2 domains of IRS-1 adaptor proteins showed that the loss of IRS-1 binding of Crk, GRB2, SHP-2, and the p85 subunit of phosphatidylinositol 3'-kinase paralleled the rate of overall IRS-1 dephosphorylation. Further studies revealed that the adaptor protein GRB2 strongly promoted the formation of a stable protein complex between tyrosine-phosphorylated IRS-1 and catalytically inactive PTP1B, increasing their co-immunoprecipitation from an equimolar solution by 13.5 +/- 3.3-fold (n = 7; p < 0.01). Inclusion of GRB2 in a reaction mixture of IRS-1 and active PTP1B also increased the overall rate of IRS-1 tyrosine dephosphorylation by 2.7-3.9-fold (p < 0.01). These results provide new insight into novel molecular interactions involving PTP1B and GRB2 that may influence the steady-state capacity of IRS-1 to function as a phosphotyrosine scaffold and possibly affect the balance of postreceptor insulin signaling.  相似文献   

6.
Protein tyrosine phosphatase 1B (PTP1B) is a highly specific negative regulator of insulin receptor signaling in vivo. The determinants of PTP1B specificity for the insulin receptor versus other receptor tyrosine kinases are largely unknown. Here, we report a crystal structure at 2.3 A resolution of the catalytic domain of PTP1B (trapping mutant) in complex with the phosphorylated tyrosine kinase domain of the insulin receptor (IRK). The crystallographic asymmetric unit contains two PTP1B-IRK complexes that interact through an IRK dimer interface. Rather than binding to a phosphotyrosine in the IRK activation loop, PTP1B binds instead to the opposite side of the kinase domain, with the phosphorylated activation loops sequestered within the IRK dimer. The crystal structure provides evidence for a noncatalytic mode of interaction between PTP1B and IRK, which could be important for the selective recruitment of PTP1B to the insulin receptor.  相似文献   

7.
Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphatase PTP1B and that PTP1B suppresses PDGF-induced motility in cultured cells and that it attenuates neointima formation in injured carotid arteries. Others have reported that insulin enhances the mitogenic and motogenic effects of PDGF in cultured smooth muscle cells and that hyperinsulinemia promotes vascular remodeling. In the present study, we tested the hypothesis that insulin amplifies PDGF-induced cell motility by suppressing the expression and function of PTP1B. We found that chronic but not acute treatment of cells with insulin enhances PDGF-induced motility in differentiated cultured primary rat aortic smooth muscle cells and that it suppresses PDGF-induced upregulation of PTP1B protein. Moreover, insulin suppresses PDGF-induced upregulation of PTP1B mRNA levels, PTP1B enzyme activity, and binding of PTP1B to the PDGF receptor-beta, and it enhances PDGF-induced PDGF receptor phosphotyrosylation. Treatment with insulin induces time-dependent upregulation of phosphatidylinositol 3-kinase (PI3-kinase)-delta and activation of Akt, an enzyme downstream of PI3-kinase. Finally, inhibition of PI3-kinase activity, or its function, by pharmacological or genetic means rescues PTP1B activity in insulin-treated cells. These observations uncover novel mechanisms that explain how insulin amplifies the motogenic capacity of the pivotal growth factor PDGF.  相似文献   

8.
PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.  相似文献   

9.
The mechanism of insulin's action upon intracellular proteolysis in isolated hepatocytes was studied. At 37 degrees C insulin inhibited intracellular degradation of intracellular proteins in a dose-dependent manner. A maximal 40% inhibition of intracellular proteolysis was achieved at an insulin concentration of 500 ng/ml with a half-maximal inhibition observed at 2.5 ng/ml of insulin. Insulin inhibited intracellular proteolysis both in the presence and in the absence of amino acids in the incubation mixture. Low concentrations of trypsin (10 micrograms/ml) mimicked insulin's effect upon glucose incorporation into glycogen, but not on intracellular proteolysis. Four protease inhibitors (phenylmethylsulfonyl fluoride (0.5 mM), p-nitrophenyl-p-guanidinobenzoate (0.25 mM), p-tosyl-L-arginine methyl ester (1 mM), and N alpha-p-tosyl-L-lysine chloromethyl ketone (1 mM) blocked the stimulatory effect of insulin upon [14C]glucose incorporation into glycogen, but did not affect the inhibitory action of insulin upon intracellular proteolysis. These results suggest that the mechanism of insulin's action upon intracellular proteolysis differs from that involved in stimulation of glycogenesis. Low temperature (15 degrees C) and short time exposure (10 min) of the hepatocytes to insulin eliminated the inhibitory effect of insulin on intracellular proteolysis. Similarly, insulin's effect on intracellular proteolysis was eliminated by dansylcadaverine, a transglutaminase inhibitor that blocked insulin internalization. In contrast, dansylcadaverine had no effect on insulin's ability to stimulate [14C]glucose incorporation into glycogen. These experiments strongly suggest the necessity of insulin internalization for its inhibitory effect on endogenous protein degradation.  相似文献   

10.
The protein tyrosine phosphatase PTP1B is responsible for negatively regulating insulin signaling by dephosphorylating the phosphotyrosine residues of the insulin receptor kinase (IRK) activation segment. Here, by integrating crystallographic, kinetic, and PTP1B peptide binding studies, we define the molecular specificity of this reaction. Extensive interactions are formed between PTP1B and the IRK sequence encompassing the tandem pTyr residues at 1162 and 1163 such that pTyr-1162 is selected at the catalytic site and pTyr-1163 is located within an adjacent pTyr recognition site. This selectivity is attributed to the 70-fold greater affinity for tandem pTyr-containing peptides relative to mono-pTyr peptides and predicts a hierarchical dephosphorylation process. Many elements of the PTP1B-IRK interaction are unique to PTP1B, indicating that it may be feasible to generate specific, small molecule inhibitors of this interaction to treat diabetes and obesity.  相似文献   

11.
Protein-tyrosine phosphatase-1B (PTP1B) has been implicated as a negative regulator of insulin signaling. PTP1B dephosphorylates the insulin receptor and insulin receptor substrates (IRS-1/2), inhibiting the insulin-signaling pathway. PTP1B has been reported to be elevated in diabetes and insulin-resistant states. Conversely, PTP1B null mice have increased insulin sensitivity. To further investigate the effect of PTP1B reduction on insulin signaling, FAO rat hepatoma cells were transfected, by electroporation, with a specific PTP1B antisense oligonucleotide (ASO), or a control oligonucleotide. The PTP1B ASO caused a 50-70% reduction in PTP1B protein expression as measured by Western blot analysis. Upon insulin stimulation, an increase in the phosphorylation of the insulin receptor and insulin receptor substrates was observed, without any change in protein expression levels. Reduction of PTP1B expression in FAO cells also caused an increase in insulin-stimulated phosphorylation of PKB and GSK3, without any change in protein expression. These results demonstrate that reduction of PTP1B can modulate key insulin signaling events downstream of the insulin receptor.  相似文献   

12.
Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires 相似文献   

13.
Certain PKC isoforms are stimulated by insulin and interact with IR as well as with IRS, but it is still not clear if specific PKC isoforms regulate IR signaling directly or through IRS-1. PKCalpha may regulate IRS activity in response to insulin. We investigated the possibility that PKCalpha may be important in insulin signaling. Studies were conducted on skeletal muscle in adult mice and on L6 skeletal cells. PKCalpha is constitutively associated with IRS-1, and insulin stimulation of PKCalpha causes disassociation of the two proteins within 5 min. Blockade of PKCalpha inhibited insulin-induced disassociation of PKCalpha from IRS1. Selective inhibition of PKCalpha increased the ability of insulin to reduce blood glucose levels. Insulin stimulation activates PKB and increases the association of PKCalpha with PKB. Blockade of PKCalpha increased threonine phosphorylation of PKB. We suggest that PKCalpha regulates insulin signaling in skeletal muscle through its disassociation from IRS-1 and association with PKB.  相似文献   

14.
Tyrosine phosphorylation of the insulin receptor is the initial event following receptor binding to insulin, and it induces further tyrosine phosphorylation of various intracellular molecules. This signaling is countered by protein tyrosine phosphatases (PTPases), which reportedly are associated with insulin resistance that can be reduced by regulation of PTPases. Protein tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related PTPase (LAR) are the PTPases implicated most frequently in insulin resistance and diabetes mellitus. Here, we show that PTP1B and LAR are expressed in human fibroblasts, and we examine the regulation of PTPase activity in fibroblasts from patients with an insulin receptor gene mutation as an in vitro model of insulin resistance. Total PTPase activity was significantly lower in the cytosolic and membrane fractions of fibroblasts with mutations compared with controls (p<0.05). Insulin stimulation of fibroblasts with mutations resulted in a significantly smaller increase in PTP1B activity compared with stimulation of wild-type fibroblasts (p<0.05). This indicates that insulin receptor gene mutations blunt increases in PTPase activity in response to insulin, possibly via a negative feedback mechanism. Our data suggest that the PTPase activity in patients with insulin receptor gene mutation and severe insulin resistance may differ from that in ordinary type 2 diabetes.  相似文献   

15.
The dynamics of interaction of the insulin receptor (IR) with Grb14 was monitored, in real time, in living human embryonic kidney cells, using bioluminescence resonance energy transfer (BRET). We observed that insulin rapidly and dose-dependently stimulated this interaction. We also observed that insulin-induced BRET between the IR and protein tyrosine phosphatase 1B (PTP1B) was markedly reduced by Grb14, suggesting that Grb14 regulated this interaction in living cells. Using site-specific antibodies against phosphorylated tyrosines of the IR, we showed that Grb14 protected the three tyrosines of the kinase loop from dephosphorylation by PTP1B, while favouring dephosphorylation of tyrosine 972. This resulted in decreased IRS-1 binding to the IR and decreased activation of the extracellular signal-regulated kinase pathway. Increased Grb14 expression in human liver-derived HuH7 cells also seemed to specifically decrease the phosphorylation of Y972. Our work therefore suggests that Grb14 may regulate signalling through the IR by controlling its tyrosine dephosphorylation in a site-specific manner.  相似文献   

16.
Issad T  Boute N  Boubekeur S  Lacasa D 《Biochimie》2005,87(1):111-116
PTP1B is a protein tyrosine-phosphatase predominantly located on the cystosolic surface of the endoplasmic reticulum. This tyrosine-phosphatase plays a major role in the regulation of the activity of the insulin receptor (IR). We have studied the interaction of the IR with PTP1B in living cells using bioluminescence resonance energy transfer (BRET). The IR was fused to Renilla luciferase and a substrate-trapping mutant of PTP1B was fused to the yellow variant of the green fluorescent protein (YFP). When the two partners interacted, an energy transfer occurred between the luciferase and the YFP, and a fluorescent signal, emitted by the YFP, could be detected. The interaction of the IR with PTP1B could be monitored in real time for more than 30 min. Insulin rapidly and dose-dependently stimulated this interaction. The basal (insulin-independent) interaction of IR with PTP1B was much lower with a soluble form than with the endoplasmic reticulum-targeted form of PTP1B, indicating that this basal interaction mainly occurred in the endoplasmic reticulum. In the basal state, PTP1B and the IR indeed co-localized in the endoplasmic reticulum, as demonstrated by confocal microscopy and cell fractionation experiments. Moreover, inhibition of IR processing with tunicamycin indicated that the basal interaction of PTP1B with IR occurred during biosynthesis of the IR precursor in the endoplasmic reticulum. These results strongly suggest that PTP1B not only dephosphorylates the insulin receptor that has been activated by insulin, but also regulates the insulin receptor precursor during its biosynthesis. Localisation of PTP1B to the endoplasmic reticulum may be important to prevent insulin-independent autonomous activity of the immature insulin receptor precursor.  相似文献   

17.
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key post-receptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases). PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis. Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation. Catalase pretreatment abolished the insulin-stimulated production of H(2)O(2) as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M(r) insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.  相似文献   

18.
Cellular chromium enhances activation of insulin receptor kinase   总被引:3,自引:0,他引:3  
Wang H  Kruszewski A  Brautigan DL 《Biochemistry》2005,44(22):8167-8175
Chromium has been recognized for decades as a nutritional factor that improves glucose tolerance by enhancing in vivo insulin action, but the molecular mechanism is unknown. Here we report pretreatment of CHO-IR cells with chromium enhances tyrosine phosphorylation of the insulin receptor. Different chromium(III) compounds were effective at enhancing insulin receptor phosphorylation in intact cells, but did not directly activate recombinant insulin receptor kinase. The level of insulin receptor phosphorylation in cells can be increased by inhibition of the opposing protein tyrosine phosphatase (PTP1B), a target for drug development. However, chromium did not inhibit recombinant human PTP1B using either p-nitrophenyl phosphate or the tyrosine-phosphorylated insulin receptor as the substrate. Chromium also did not alter reversible redox regulation of PTP1B. Purified plasma membranes exhibited insulin-dependent kinase activity in assays using substrate peptides mimicking sites of Tyr phosphorylation in the endogenous substrate IRS-1. Plasma membranes prepared from chromium-treated cells had higher specific activity of insulin-dependent kinase relative to controls. We conclude that cellular chromium potentiates insulin signaling by increasing insulin receptor kinase activity, separate from inhibition of PTPase. Our results suggest that nutritional and pharmacological therapies may complement one another to combat insulin resistance, a hallmark of type 2 diabetes.  相似文献   

19.
Previous studies implicate protein-tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related phosphatase (LAR) as negative regulators of insulin signaling. The expression and/or activity of PTP1B and LAR are increased in muscle of insulin-resistant rodents and humans. Overexpression of LAR selectively in muscle of transgenic mice causes whole body insulin resistance. To determine whether overexpression of PTP1B also causes insulin resistance, we generated transgenic mice overexpressing human PTP1B selectively in muscle at levels similar to those observed in insulin-resistant humans. Insulin-stimulated insulin receptor (IR) tyrosyl phosphorylation and phosphatidylinositol 3'-kinase activity were impaired by 35% and 40-60% in muscle of PTP1B-overexpressing mice compared with controls. Insulin stimulation of protein kinase C (PKC)lambda/zeta activity, which is required for glucose transport, was impaired in muscle of PTP1B-overexpressing mice compared with controls, showing that PTP1B overexpression impairs activation of these PKC isoforms. Furthermore, hyperinsulinemic-euglycemic clamp studies revealed that whole body glucose disposal and muscle glucose uptake were decreased by 40-50% in PTP1B-overexpressing mice. Overexpression of PTP1B or LAR alone in muscle caused similar impairments in insulin action; however, compound overexpression achieved by crossing PTP1B- and LAR-overexpressing mice was not additive. Antibodies against specific IR phosphotyrosines indicated overlapping sites of action of PTP1B and LAR. Thus, overexpression of PTP1B in vivo impairs insulin sensitivity, suggesting that overexpression of PTP1B in muscle of obese humans and rodents may contribute to their insulin resistance. Lack of additive impairment of insulin signaling by PTP1B and LAR suggests that these PTPs have overlapping actions in causing insulin resistance in vivo.  相似文献   

20.
Phorbol 12-myristate 13-acetate (PMA) was used to examine the role of insulin receptor phosphorylation in the regulation of insulin receptor internalization in vascular endothelial cells. Association of 125I-insulin in rat capillary and bovine aortic endothelial cells preincubated with PMA was increased by 80 and 64% over control, respectively. The increase was due to enhanced 125I-insulin internalization as opposed to an effect on surface-bound hormone. PMA had no significant effect on 125I-insulin degradation or on release of internalized insulin from the cells. Internalization of 125I-labeled insulin receptor was determined by the resistance of labeled receptor to trypsinization. At 10 degrees C, nearly all of the labeled receptor was sensitive to removal by trypsin, indicating that it was exposed on the cell surface. Exposure of labeled cells to insulin (100 nM) at 37 degrees C resulted in the rapid appearance of trypsin-resistant insulin receptor, indicating receptor internalization. Steady state for receptor internalization was attained at 10-15 min. When surfaced-labeled cells were preincubated with PMA at 37 degrees C, the rate of insulin receptor internalization was increased by 3.6 +/- 0.2-fold and 2.1 +/- 0.5-fold at 1 and 5 min of insulin exposure, respectively (ED50 at 16 nM PMA). This effect of PMA was associated with an increase in serine phosphorylation of the insulin receptor. Thus, PMA increased insulin internalization in the endothelial cells by modulating the insulin-induced internalization of the receptor. The additive effects of PMA and insulin on insulin receptor phosphorylation suggest that the phorbol ester and insulin act via independent signaling mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号