首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver plasma membranes were found to have a relatively high ratio of acid to alkaline phosphatase activity when compared to rabbit liver and human placental membranes, respectively. The rat liver plasma membranes contained PPTl phosphatase activity against the soluble autophosphorylated insulin receptor beta-subunit. The PPT phosphatase activity of the membranes, using 32P-histone 2b as a substrate, was inhibited by 100 microM Zn+2, insensitive to 10 mM EDTA, and displayed maximal activity at neutral pH. Dephosphorylation of the insulin receptor beta-subunit by rat liver membranes was inhibited by Zn+2, and stimulated by EDTA. These results prove that the plasma membrane of a physiologically relevant insulin target tissue contains a PPT phosphatase, distinct from alkaline phosphatase, which catalyzes the dephosphorylation of the insulin receptor beta-subunit.  相似文献   

2.
NADH oxidase activity of plasma membranes from rat hepatoma and HeLa cells responded to thiol reagents in a manner different from that of plasma membranes of liver. Specifically, the NADH oxidase activity of plasma membranes of HeLa cells was inhibited by submicromolar concentrations of the thiol reagentsp-chloromercuribenzoate (PCMB),N-ethylmaleimide (NEM), or 5,5-dithiobis-(2-nitrophenylbenzoic acid) (DTNB), whereas that of the rat liver plasma membranes was unaffected or stimulated over a wide range of concentrations extending into the millimolar range. With some hepatoma preparations, the NADH oxidase activity of hepatoma plasma membranes was stimulated rather than inhibited by PCMB, whereas with all preparations of hepatoma plasma membranes, NEM and DTNB stimulated the activity. In contrast, NADH oxidase activity of rat liver plasma membrane was largely unaffected over the same range of PCMB concentrations that either stimulated or inhibited with rat hepatoma or HeLa cell plasma membranes. Dithiothreitol and glutathione stimulated NADH oxidase activity of plasma membranes of rat liver and hepatoma but inhibited that of HeLa plasma membranes. The findings demonstrate a difference between the NADH oxidase activity of normal rat liver plasma membranes of rat hepatoma and HeLa cell plasma membranes in addition to the differential response to growth factors and hormones reported previously (Brunoet al., 1992). Results are consistent with a structural modification of a NADH oxidase activity involving thiol groups present in plasma membranes of rat hepatoma and HeLa cells but absent or inaccessible with plasma membranes of rat liver.  相似文献   

3.
Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new 'break' occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.  相似文献   

4.
NADH oxidase of purified plasma membranes (electron transfer from NADH to oxygen) was stimulated by the growth factor diferric transferrin. This stimulation was of an activity not inhibited by cyanide and was not seen in plasma membranes prepared from hyperplastic nodules from liver of animals fed the hepatocarcinogen, 2-acetylaminofluorene, nor was it due to reduction of iron associated with diferric transferrin. With plasma membranes from nodules, the activity was already elevated and the added transferrin was without effect. The stimulation by diferric transferrin did not correlate with the absence of transferrin receptors which were increased at the nodule plasma membranes. With liver plasma membranes, the stimulation by diferric transferrin raised the plasma membrane NADH oxidase specific activity to approximately that of the nodule plasma membranes. In contrast to NADH oxidase, which was markedly stimulated by the diferric transferrin, NADH ferricyanide oxidoreductase or reduction of ferric ammonium citrate by liver plasma membranes was approximately equal to or slightly greater than that of the nodule plasma membrane and unaffected by diferric transferrin. The results suggest the possibility of coupling of NADH oxidase activity to a growth factor response in mammalian cells as observed previously for this enzyme in another system.  相似文献   

5.
M S Liu  S Ghosh  Y Yang 《Life sciences》1983,33(20):1995-2002
The effects of endotoxin administration on the fluidity of dog liver plasma membranes and their relationship with changes in phospholipase A2 activity were studied. Endotoxin administration decreased the fluidity of liver plasma membranes and this decrease was reversible by phosphatidylcholine. The endotoxin-induced decrease in membrane fluidity could be mimicked by digesting control liver membranes with exogenous phospholipase A2. Endotoxin administration also increased the endogenous phospholipase A2 activity. Endotoxin in vitro had no phospholipase A2-like activity but it activated the hydrolytic activity of exogenous phospholipase A2. Based on these data, it is concluded that endotoxin administration decreased the fluidity of canine liver plasma membranes by acting through activation of phospholipase A2. The decrease in membrane lipid fluidity induced by endotoxin administration may play a significant role in the development of the pathophysiology of endotoxic shock at the cellular level.  相似文献   

6.
Human high density lipoprotein (HDL3) binding to rat liver plasma membranes   总被引:3,自引:0,他引:3  
The binding of human 125I-labeled HDL3 to purified rat liver plasma membranes was studied. 125I-labeled HDL3 bound to the membranes with a dissociation constant of 10.5 micrograms protein/ml and a maximum binding of 3.45 micrograms protein/mg membrane protein. The 125I-labeled HDL3-binding activity was primarily associated with the plasma membrane fraction of the rat liver membranes. The amount of 125I-labeled HDL3 bound to the membranes was dependent on the temperature of incubation. The binding of 125I-labeled HDL3 to the rat liver plasma membranes was competitively inhibited by unlabeled human HDL3, rat HDL, HDL from nephrotic rats enriched in apolipoprotein A-I and phosphatidylcholine complexes of human apolipoprotein A-I, but not by human or rat LDL, free human apolipoprotein A-I or phosphatidylcholine vesicles. Human 125I-labeled apolipoprotein A-I complexed with egg phosphatidylcholine bound to rat liver plasma membranes with high affinity and saturability, and the binding constants were similar to those of human 125I-labeled HDL3. The 125I-labeled HDL3-binding activity of the membranes was not sensitive to pronase or phospholipase A2; however, prior treatment of the membranes with phospholipase A2 followed by pronase digestion resulted in loss of the binding activity. Heating the membranes at 100 degrees C for 30 min also resulted in an almost complete loss of the 125I-labeled HDL3-binding activity.  相似文献   

7.
The activity of Na+, K+, Mg2+-ATPase in plasma membranes of the rat liver was studied as affected by thiamine, oxythiamine and food B1-avitaminosis. It is shown that the ATPase activity of the liver plasma membranes is inhibited only in case of modelling the alimentary thiamine deficiency.  相似文献   

8.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+ -ATPase and the Mg2+ -ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membrane-bound Mg2+ -ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20 degrees C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+ -ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at -20 degrees C, which was characteristic of hepatoma plasma membrane Mg2+ -ATPase. With solubilized Mg2+ -ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+ -ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at -20 degrees C.  相似文献   

9.
1. Plasma membranes of comparable yield and purity were isolated from the livers of various animal species belonging to phylogenetic groups from Amphibia to Mammalia. 2. Calcium transport activity was observed in all liver plasma membranes examined. 3. No phylogenetic pattern of expression of the liver plasma membrane calcium transport system was observed, with the order of activity being: guinea pig greater than rabbit greater than frog greater than chicken = hamster greater than rat = budgerigar = turtle greater than beef cattle greater than mouse = duck. 4. Calcium transport activity was only 9.7 and 8.7% of adult frog levels in plasma membranes isolated from the livers of tadpoles without and with limbs, respectively. 5. Liver plasma membrane calcium transport activity was 25% higher in adult chickens than in day-old chicks. 6. A possible role for thyroid hormone in the development of the liver plasma membrane calcium transport system is discussed.  相似文献   

10.
The alteration of the plasma membrane (Ca2+-Mg2+)-ATPase activity in the liver of rats administered orally carbon tetrachloride (CCl4) solution was investigated. Rats received a single oral administration of CCl4 (10, 25 and 50%, 1.0 ml/100 g body weight), and 3 or 24 h later they were sacrificed. CCl4 administration caused a remarkable elevation of liver calcium content and a corresponding increase in liver plasma membrane (Ca2+-Mg2+)-ATPase activity, indicating that the increased Ca2+ pump activity is partly involved in calcium accumulation in liver cells. Moreover, the participation in regucalcin, which is an intracellular activating factor on the enzyme, was examined by using anti-regucalcin IgG. The plasma membrane (Ca2+-Mg2+)-ATPase activity increased by CCl4 administration was not entirely inhibited by the presence of anti-regucalcin IgG (1.0 and 2.5 ug/ml) in the enzyme reaction mixture. However, the effect of regucalcin (0.25–1.0 uM) to activate (Ca2+-Mg2+)-ATPase in the liver plasma membranes of normal rats was not revealed in the liver plasma membranes obtained from CCl4-administered rats. Also, the effect of regucalcin was not seen when the plasma membranes were washed with 1.0 mM EGTA, indicating that the disappearance of regucalcin effect is not dependent on calcium binding to the plasma membranes due to liver calcium accumulation. Now, the presence of dithiothreitol (5 mM) or heparin (20 ug/ml) caused a remarkable elevation of the plasma membrane (Ca2+-Mg2+)-ATPase activity in the liver obtained from CCl4-administered rats. Thus, the regucalcin effect differed from that of dithiothreitol or heparin. The present study suggests that the impairment of regucalcin effect on Ca2+ pump activity in liver plasma membranes is partly contribute to hepatic calcium accumulation induced by liver injury with CCl4 administration.  相似文献   

11.
A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5'-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at approximately 10 microM vanadate, corresponding to approximately 12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems.  相似文献   

12.
1. The effects of age-dependent or liposome-induced alterations in the phospholipid composition of rat liver plasma and microsomal membranes on the phosphatidylethanolamine:ceramide-phosphoethanolamine (PE:Cer-PEt) and phosphatidylcholine:ceramide-phosphocholine (PC:Cer-PCh) transferase activities were studied. 2. In all cases under study the PE:Cer-PEt transferase activity was found to be several times higher than that of PC:Cer-PCh transferase in both plasma and microsomal rat liver membranes. 3. The presence of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) in plasma membranes was observed to enhance the PE:Cer-PEt transferase activity, while phosphatidylserine (PS) inhibited it.  相似文献   

13.
Purified alkaline phosphatase and plasma membranes from human liver were shown to dephosphorylate phosphohistones and plasma membrane phosphoproteins. The protein phosphatase activity of the liver plasma membranes was inhibited by levamisole, a specific inhibitor of alkaline phosphatase, and by phenyl phosphonate and orthovanadate, but was relatively insensitive to fluoride (50 mM). Endogenous membrane protein phosphatase activity was optimal at pH 8.0, compared to pH 7.8 for purified liver alkaline phosphatase. Plasma membranes also exhibited protein kinase activity using exogenous histone or endogenous membrane proteins (autophosphorylation) as substrates; this activity was cAMP-dependent. Autophosphorylation of plasma membrane proteins was apparently enhanced by phenyl phosphonate, levamisole, or orthovanadate. The dephosphorylation of phosphohistones by protein phosphatase 1 was not inhibited by levamisole but was inhibited by fluoride. Inhibition of endogenous protein phosphatase activity by orthovanadate during autophosphorylation of plasma membranes could be reversed by complexation of the inhibitor with (R)-(-)-epinephrine, and the dephosphorylation that followed was levamisole-sensitive. Neither plasma membranes nor purified liver alkaline phosphatase dephosphorylated glycogen phosphorylase a. These results suggest that the increased [32P]phosphate incorporation by endogenous protein kinases into the membrane proteins is due to inhibition of alkaline phosphatase and that the major protein phosphatase of these plasma membranes is alkaline phosphatase.  相似文献   

14.
Addition of NADH, but not NAD+ or NADPH, to rat liver plasma membranes resulted in the increase of their 5'-nucleotidase activity. NADH-dependent activation of 5'-nucleotidase was significantly suppressed by atebrine, an inhibitor of NADH dehydrogenase of plasma membranes, and completely abolished by 2,4-dinitrophenol (2 X 10(-4)M) and Triton X-100 (2%). Inhibitors of electron transfer in the mitochondrial respiratory chain, rotenone and potassium cyanide, failed to affect 5'-nucleotidase activity in both the presence and absence of NADH. The data obtained give reasons to suggest a redox-dependent mechanism of 5'-nucleotidase activation in rat liver plasma membranes.  相似文献   

15.
The distribution of adenylate cyclase (AC) in Golgi and other cell fractions from rat liver was studied using the Golgi isolation procedure of Ehrenreich et al. In liver homogenate the AC activity was found to decay with time, but addition of 1 mM EGTA reduced the rate of enzyme loss. The incorporation of 1 mM EGTA into the sucrose medium used in the initial two centrifugal steps of the Golgi isolation method stabilized the enzyme activity throughout the entire procedure and resulted in good enzyme recovery. In such preparations, AC activity was demonstrated to be associated not only with plasma membranes but also with Golgi membranes and smooth microsomal membranes as well. Furthermore, under the conditions used, enzyme activity was also associated with the 105,000 g x 90 min supernatant fraction. The specific activity of the liver homogenate was found to be 2.9 pmol-mg protein-1-min-1, the nonsedimentabel and microsomal activity was of the same order of magnitude, but the Golgi and plasma membrane activities were much higher. The specific activity of plasma membrane AC was 29 pmol-mg proten-1-min-1. The Golgi activity varied in the three fractions, with the highest activity (14 pmol) in GF1 lowest activity (1.8) in GF2, and intermediate activity (5.5) in GF3, when the Golgi activity was corrected for the presence of content protein, the activity in GF1 became much higher (9 x) than that of the plasma membrane while the activities in GF2 and GF3 were comparable to that of plasma membrane. In all locations studied, the AC was sensitive to NaF stimulation, especially the enzyme associated with Golgi membranes. The activities in plasma and microsomal membranes were stimulated by glucagon, whereas the Golgi and nonsedimentable AC were not.  相似文献   

16.
Investigations have been carried out on the influence of the phospholipid composition and the physicochemical properties of rat liver plasma membranes on the endogenous activity of membrane-bound phospholipase A2. The membrane phospholipid composition was modified by the incorporation of different phospholipids in the lipid bilayer by the aid of lipid transfer proteins. The results indicate that the endogenous activity of phospholipase A2 in liver plasma membranes depends upon membrane fluidity and not upon the presence of a specific phospholipid in the enzyme's microenvironment.  相似文献   

17.
The influence of the phospholipid composition and the physico-chemical properties of rat liver plasma membranes on the activity of membrane-bound phospholipase A2 has been investigated. The plasma membrane composition was modified by the aid of exogenous phospholipases A2, C and D, and by butanol treatment. The partially delipidated membranes thus obtained were enriched with different phospholipids. The steady-state fluorescent anisotropy of 1,6-diphenyl-1,3,5-hexatriene and the lipid order parameter-SDPH in the modified membranes were calculated. It was established that the activity of the membrane-bound phospholipase A2 was higher in rigid membranes and was decreased when the membrane lipid bilayer was fluidized.  相似文献   

18.
Rat liver plasma membranes contain (Ca2+-Mg2+)-ATPase sensitive to inhibition by both glucagon and Mg2+. We have previously shown that Mg2+ inhibition is mediated by a 30,000-dalton inhibitor, originally identified as a membrane-bound protein. In fact, this inhibitor is also present in the 100,000 X g supernatant of the total liver homogenate. Its purification was achieved from this fraction by a combination of ammonium sulfate washing, gel filtration, and cationic exchange chromatography. N-Ethylmaleimide (NEM) treatment caused the inactivation of the purified inhibitor, which suggested that this protein possesses at least one NEM-sensitive sulfhydryl group essential for its activity. Treatment of the liver plasma membranes with NEM resulted in a 2- and 5-fold decrease in the affinity of the (Ca2+-Mg2+)-ATPase for glucagon and Mg2+, respectively, while the basal enzyme activity remained unchanged. This effect of NEM was concentration-, pH-, and time-dependent, optimal conditions being obtained by a 60-min treatment of plasma membranes with 50 mM NEM, at pH 7 and at 4 degrees C. The presence of 0.5 mM Mg2+ during NEM treatment of the plasma membranes prevented NEM inactivation. Reconstitution experiments showed that addition of the purified inhibitor to NEM-treated plasma membranes restored the inhibitions of the (Ca2+-Mg2+)-ATPase by both magnesium and glucagon. It is proposed that the (Ca2+-Mg2+)-ATPase inhibitor not only confers its sensitivity of the liver (Ca2+-Mg2+)-ATPase to Mg2+, but also mediates the inhibition of this system by glucagon.  相似文献   

19.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

20.
Insulin-degrading, Ca2+-activated, neutral proteinases of molecular weight about 150 kDa and 70 kDa were purified from plasma membranes of the loach liver and embryo cells. It was shown that dithiothreitol and cysteine enhanced the enzyme activity, whereas p-chloromercuribenzoate and iodoacetic acid inhibited its level. Incubation of isolated plasma membranes with 5'[gamma 32P]ATP resulted in phosphorylation of these proteinases. The intensity of the process increased under the influence of insulin (100 microU/ml), that correlated with a decrease in the activity of proteinase with molecular weight of 150 kDa and an increase in 70 kDa enzyme activity. The data suggest the existence of common regulatory pathways of insulin degradation in plasma membranes of the loach liver and embryo cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号