首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of eight mutations on the thermodynamics of the reversible thermal unfolding of staphylococcal nuclease have been determined over a range of pH and protein concentration by means of differential scanning calorimetry. Variation of the protein concentration was included in our study because we found a significant dependence of the thermodynamics of protein unfolding on concentration. Values for the change in the standard free energy of unfolding, delta delta G0d, produced by the mutations in the pH range 5.0-7.0 varied from 1.9 kcal mol-1 (apparent stabilization) for H124L to -2.8 kcal mol-1 (apparent destabilization) for L25A. As has been observed in numerous other cases, there is no correlation in magnitude or sign between delta delta G0d and the corresponding values for delta delta Hd and T delta delta S0d, the latter quantities being in most cases much larger in magnitude than delta delta G0d. This fact emphasizes the difficulty in attempting to correlate the thermodynamic changes with structural changes observed by X-ray crystallography.  相似文献   

2.
The influence of core hydrophobicity and packing on the structure and stability of the hyperthermophile proteins Sac7d and Sso7d have been studied by calorimetry, circular dichroism, and NMR. Valine 30 is positioned in Sac7d to allow a cavity-filling Val --> Ile substitution which occurs naturally in the homologous more thermostable Sso7d. The cavity-filling mutation in Sac7d has been characterized and compared to the reciprocal Ile --> Val mutation in Sso7d. A detailed analysis of the stability of the proteins was obtained by globally fitting the variation of DSC parameters and circular dichroism intensities as a function of temperature (0-100 degrees C), salt (0-0.3 M), and pH (0-8). A global analysis over such a range of conditions permitted an unusually precise measure of the thermodynamic parameters, as well as the separation of the thermodynamics of the intrinsic unfolding reaction from the linked effects of protonation and chloride binding associated with acid-induced folding. The results indicate differences in the energetics of unfolding Sac7d and Sso7d that would not be apparent from an analysis of DSC data alone using conventional methods. The sign and magnitude of the changes in DeltaG, DeltaH, TDeltaS, and DeltaC(P) of unfolding resulting from core Ile/Val substitutions in the two proteins were consistent with differences in hydrophobicity of Val and Ile and negligible changes in packing (van der Waals) interactions. The benefit of increased hydrophobicity of the core increased with temperature, with maximal effect around 116 degrees C. Increased hydrophobicity of the core achieved not only an increase in the free energy of unfolding, but also a lateral shift of the temperature of maximal stability to higher temperature.  相似文献   

3.
The role of kinetics in governing exceptional stability of thermophilic ferredoxins has been explored. Strikingly, unfolding-rate constants (pH 7, 20 degrees C) are over eight (log(10)) orders of magnitude slower for the thermophiles than for a large set of unrelated mesophilic proteins. Also at low pH, where ionic interactions are diminished, unfolding of the thermophilic ferredoxins is significantly slower than unfolding of the mesophiles at pH 7, emphasizing the importance of hydrophobic interactions. A kinetic barrier towards unfolding may be a common strategy used by many proteins to withstand extreme conditions.  相似文献   

4.
The heat capacity change upon protein unfolding has been analysed using the heat capacity data for the model compounds' transfer into water, corrected for volume effects. It has been shown that in the unfolding, the heat capacity increment is contributed to by the effect of hydration of the non-polar groups, which is positive and decreases with temperature increase, and by the effect of hydration of the polar groups, which is negative and decreases in magnitude as temperature increases. The sum of these two effects is very close to the total heat capacity increment of protein unfolding at room temperature but is likely to deviate from it at higher temperatures. Therefore, the expected heat capacity effect caused by the increase of configurational freedom of the polypeptide chain upon unfolding seems to be compensated for by some other effect, perhaps associated with fluctuation of the native protein structure.  相似文献   

5.
Renthal R 《Biochemistry》2006,45(49):14559-14566
Reversible unfolding of helical transmembrane proteins could provide valuable information about the free energy of interaction between transmembrane helices. Thermal unfolding experiments suggest that this process for integral membrane proteins is irreversible. Chemical unfolding has been accomplished with organic acids, but the unfolding or refolding pathways involve irreversible steps. Sodium dodecyl sulfate (SDS) has been used as a perturbant to study reversible unfolding and refolding kinetics. However, the interpretation of these experiments is not straightforward. It is shown that the results could be explained by SDS binding without substantial unfolding. Furthermore, the SDS-perturbed state is unlikely to include all of the entropy terms involved in an unfolding process. Alternative directions for future research are suggested: fluorinated alcohols in homogeneous solvent systems, inverse micelles, and fragment association studies.  相似文献   

6.
A J Doig  D H Williams 《Biochemistry》1992,31(39):9371-9375
The changes in free energy, enthalpy, and entropy of unfolding have been measured for many water-soluble, compact, globular proteins by a number of workers. In principle, a wide range in stability could be achieved by proteins, as measured by the free energy of unfolding; in practice, evolution only allows a narrow range in this quantity. Proteins are only marginally stable at room temperature for many possible reasons, including ensuring that folding is reversible and polypeptide chains are not trapped in incorrectly folded structures. Many of these proteins have approximately the same values of enthalpy of unfolding around 110 degrees C. We show here that this arises because the change in entropy of unfolding at room temperature and the change in heat capacity on unfolding, which governs the temperature variation of the enthalpy and entropy, both vary with the magnitude of the hydrophobic effect in the protein. As all these proteins have evolved to achieve similar stabilities at room temperature, the enthalpy of unfolding will also vary with the size of the hydrophobic effect in the protein. A consequence of this is that curves of the specific unfolding enthalpy against temperature for different proteins intersect around 110 degrees C. A similar conclusion, on the basis of similar melting points rather than similar free energies of unfolding, has been reached independently by Baldwin and Muller (R. L. Baldwin, personal communication).  相似文献   

7.
The possibility of separating charges in an ordinary electric discharge was demonstrated. The luminous object formed after the end of the discharge was found to exist over a few hundred milliseconds, or six orders of magnitude longer than the lifetime of an ideal plasma of the same volume. It is shown that the luminous object has a negative electric charge and has no free charged particles of opposite sign.  相似文献   

8.
Pressure-induced unfolding of 23-kDa protein from spinach photosystem II has been systematically investigated at various experimental conditions. Thermodynamic equilibrium studies indicate that the protein is very sensitive to pressure. At 20 degrees C and pH 5.5, 23-kDa protein shows a reversible two-state unfolding transition under pressure with a midpoint near 160 MPa, which is much lower than most natural proteins studied to date. The free energy (DeltaG(u)) and volume change (DeltaV(u)) for the unfolding are 5.9 kcal/mol and -160 ml/mol, respectively. It was found that NaCl and sucrose significantly stabilize the protein from unfolding and the stabilization is associated not only with an increase in DeltaG(u) but also with a decrease in DeltaV(u). The pressure-jump studies of 23-kDa protein reveal a negative activation volume for unfolding (-66.2 ml/mol) and a positive activation volume for refolding (84.1 ml/mol), indicating that, in terms of system volume, the protein transition state lies between the folded and unfolded states. Examination of the temperature effect on the unfolding kinetics indicates that the thermal expansibility of the transition state and the unfolded state of 23-kDa protein are closer to each other and they are larger than that of the native state. The diverse pressure-refolding pathways of 23-kDa protein in some conditions were revealed in pressure-jump kinetics.  相似文献   

9.
A three-state equilibrium unfolding of a protein can be difficult to detect if two of the states fail to differ in some easily measurable way. It has been unclear whether staphylococcal nuclease unfolds in a two-state fashion, with only the native and denatured states significantly populated at equilibrium, or in a three-state manner, with a well-populated intermediate. Since equilibrium unfolding experiments are commonly used to determine protein stability and the course of denaturation are followed by changes in the fluorescence which has difficulty in distinguishing various states, this is a potential problem for many proteins. Over the course of twenty years we have performed more than one hundred guanidine hydrochloride equilibrium denaturations of wild-type staphylococcal nuclease; to our knowledge, a number of denaturations unrivaled in any other protein system. A careful examination of the data from these experiments shows no sign of the behavior predicted by a three-state unfolding model. Specifically, a three-state unfolding should introduce a slight, but characteristic, non-linearity to the plot of stability versus denaturant concentration. The average residuals from this large number of repeated experiments do not show the predicted behavior, casting considerable doubt on the likelihood of a three-state unfolding for the wild-type protein. The methods used for analysis here could be applied to other protein systems to distinguish a two-state from a three-state denaturation.  相似文献   

10.
BackgroundPressure perturbation calorimetry (PPC) is a biophysical method that allows direct determination of the volume changes upon conformational transitions in macromolecules.Scope of this reviewThis review provides novel details of the use of PPC to analyze unfolding transitions in proteins. The emphasis is made on the data analysis as well as on the validation of different structural factors that define the volume changes upon unfolding. Four case studies are presented that show the application of these concepts to various protein systems.Major conclusionsThe major conclusions are:
  • 1.Knowledge of the thermodynamic parameters for heat induced unfolding facilitates the analysis of the PPC profiles.
  • 2.The changes in the thermal expansion coefficient upon unfolding appear to be temperature dependent.
  • 3.Substitutions on the protein surface have negligible effects on the volume changes upon protein unfolding.
  • 4.Structural plasticity of proteins defines the position dependent effect of amino acid substitutions of the residues buried in the native state.
  • 5.Small proteins have positive volume changes upon unfolding which suggests difference in balance between the cavity/void volume in the native state and the hydration volume changes upon unfolding as compared to the large proteins that have negative volume changes.
General significanceThe information provided here gives a better understanding and deeper insight into the role played by various factors in defining the volume changes upon protein unfolding. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

11.
Observations of fast unfolding events in proteins are typically restricted to <100 degrees C. We use a novel apparatus to heat and cool enzymes within tens of nanoseconds to temperatures well in excess of the boiling point. The nanosecond temperature spikes are too fast to allow water to boil but can affect protein function. Spikes of 174 degrees C for catalase and approximately 290 degrees C for horseradish peroxidase are required to produce irreversible loss of enzyme activity. Similar temperature spikes have no effect when restricted to 100 degrees C or below. These results indicate that the "speed limit" for the thermal unfolding of large proteins is shorter than 10(-8) s. The unfolding rate at high temperature is consistent with extrapolation of low temperature rates over 12 orders of magnitude using the Arrhenius relation.  相似文献   

12.
Riccio A  Graziano G 《Proteins》2011,79(6):1739-1746
Isolated β-hairpins in water have a temperature dependence of their conformational stability qualitatively resembling that of globular proteins, showing both cold and hot unfolding transitions. It is shown that a molecular-level rationalization of this cold unfolding can be provided extending the approach devised for globular proteins (Graziano G. Phys Chem Chem Phys 2010; 12:14245-14252). The decrease in the solvent-excluded volume upon folding, measured by the decrease in the solvent accessible surface area, produces a gain in configurational/translational entropy of water molecules that is the main stabilizing contribution of the folded conformation. This always stabilizing Gibbs energy contribution has a parabolic-like temperature dependence in water and is exactly counterbalanced at two temperatures (i.e., the cold and hot unfolding temperatures) by the always destabilizing Gibbs energy contribution due to the loss in conformational degrees of freedom of the peptide chain.  相似文献   

13.
Precursor proteins made in the cytoplasm must be in an unfolded conformation during import into mitochondria. Some precursor proteins have tightly folded domains but are imported faster than they unfold spontaneously, implying that mitochondria can unfold proteins. We measured the import rates of artificial precursors containing presequences of varying length fused to either mouse dihydrofolate reductase or bacterial barnase, and found that unfolding of a precursor at the mitochondrial surface is dramatically accelerated when its presequence is long enough to span both membranes and to interact with mhsp70 in the mitochondrial matrix. If the presequence is too short, import is slow but can be strongly accelerated by urea-induced unfolding, suggesting that import of these 'short' precursors is limited by spontaneous unfolding at the mitochondrial surface. With precursors that have sufficiently long presequences, unfolding by the inner membrane import machinery can be orders of magnitude faster than spontaneous unfolding, suggesting that mhsp70 can act as an ATP-driven force-generating motor during protein import.  相似文献   

14.
The prion protein appears to be unusually susceptible to conformational change, and unlike nearly all other proteins, it can easily be made to convert to alternative misfolded conformations. To understand the basis of this structural plasticity, a detailed thermodynamic characterization of two variants of the mouse prion protein (moPrP), the full-length moPrP (23–231) and the structured C-terminal domain, moPrP (121–231), has been carried out. All thermodynamic parameters governing unfolding, including the changes in enthalpy, entropy, free energy, and heat capacity, were found to be identical for the two protein variants. The N-terminal domain remains unstructured and does not interact with the C-terminal domain in the full-length protein at pH 4. Moreover, the enthalpy and entropy of unfolding of moPrP (121–231) are similar in magnitude to values reported for other proteins of similar size. However, the protein has an unusually high native-state heat capacity, and consequently, the change in heat capacity upon unfolding is much lower than that expected for a protein of similar size. It appears, therefore, that the native state of the prion protein undergoes substantial fluctuations in enthalpy and hence, in structure.  相似文献   

15.
Folding studies have been focused mainly on small, single-domain proteins or isolated single domains of larger proteins. However, most of the proteins present in biological systems are composed of multiple domains, and to date, the principles that underlie its folding remain elusive. The unfolding of Pfk-2 induced by GdnHCl has been described by highly cooperative three-state equilibrium (N2↔2I↔2U). This is characterized by a strong coupling between the subunits’ tertiary structure and the integrity of the dimer interface because “I” represents an unstructured and expanded monomeric intermediate. Here we report that cold and heat unfolding of Pfk-2 resembles the N2↔2I step of chemically induced unfolding. Moreover, cold unfolding appears to be as cooperative as that induced chemically and even more so than its heat-unfolding counterpart. Because Pfk-2 is a large homodimer of 66 kDa with a complex topology consisting of well-defined domains, these results are somewhat unexpected considering that cold unfolding has been described as a special kind of perturbation that decouples the cooperative unfolding of several proteins.  相似文献   

16.
The scientific study of protein surfactant interactions goes back more than a century, and has been put to practical uses in everything from the estimation of protein molecular weights to efficient washing powder enzymes and products for personal hygiene. After a burst of activity in the late 1960s and early 1970s that established the general principles of how charged surfactants bind to and denature proteins, the field has kept a relatively low profile until the last decade. Within this period there has been a maturation of techniques for more accurate and sophisticated analyses of protein-surfactant complexes such as calorimetry and small angle scattering techniques. In this review I provide an overview of different useful approaches to study these complexes and identify eight different issues which define central concepts in the field. (1) Are proteins denatured by monomeric surfactant molecules, micelles or both? (2) How does unfolding of proteins in surfactant compare with "proper" unfolding in chemical denaturants? Recent work has highlighted the role of shared micelles, rather than monomers, below the critical micelle concentration (cmc) in promoting both protein denaturation and formation of higher order structures. Kinetic studies have extended the experimentally accessible range of surfactant concentrations to far above the cmc, revealing numerous different modes of denaturation by ionic surfactants below and above the cmc which reflect micellar properties as much as protein unfolding pathways. Uncharged surfactants follow a completely different denaturation strategy involving synergy between monomers and micelles. The high affinity of charged surfactants for proteins means that unfolding pathways are generally different in surfactants versus chemical denaturants, although there are common traits. Other issues are as follows: (3) Are there non-denaturing roles for SDS? (4) How reversible is unfolding in SDS? (5) How do solvent conditions affect the way in which surfactants denature proteins? The last three issues compare SDS with "proper" membranes. (6) Do anionic surfactants such as SDS mimic biological membranes? (7) How do mixed micelles interact with globular proteins? (8) How can mixed micelles be used to measure the stability of membrane proteins? The growing efforts to understand the unique features of membrane proteins have encouraged the development of mixed micelles to study the equilibria and kinetics of this class of proteins, and traits which unite globular and membrane proteins have also emerged. These issues emphasise the amazing power of surfactants to both extend the protein conformational landscape and at the same time provide convenient and reversible short-cuts between the native and denatured state for otherwise obdurate membrane proteins.  相似文献   

17.
The energetics of ubiquitin unfolding have been studied using differential scanning microcalorimetry. For the first time it has been shown directly that the enthalpy of protein unfolding is a nonlinear function of temperature. Thermodynamic parameters of ubiquitin unfolding were correlated with the structure of the protein. The enthalpy of hydrogen bonding in ubiquitin was calculated and compared to that obtained for other proteins. It appears that the energy of hydrogen bonding correlates with the average length of the hydrogen bond in a given protein structure. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Changes in excluded volume and contact interaction with the surface of a protein have been suggested as mechanisms for the changes in stability induced by cosolvents. The aim of the present paper is to present an analysis that combines both effects in a quantitative manner. The result is that both processes are present in both stabilizing and destabilizing interactions and neither can be ignored. Excluded volume was estimated using accessible surface area calculations of the kind introduced by Lee and Richards. The change in excluded volume on unfolding, deltaX, is quite large. For example, deltaX for ribonuclease is 6.7 L in urea and approximately 16 L in sucrose. The latter number is greater than the molar volume of the protein. Direct interaction with the protein is represented as the solvent exchange mechanism, which differs from ordinary association theory because of the weakness of the interaction and the high concentrations of cosolvents. The balance between the two effects and their contribution to overall stability are most simply presented as bar diagrams as in Fig. 3. Our finding for five proteins is that excluded volume contributes to the stabilization of the native structure and that contact interaction contributes to destabilization. This is true for five proteins and four cosolvents including both denaturants and osmolytes. Whether a substance stabilizes a protein or destabilizes it depends on the relative size of these two contributions. The constant for the cosolvent contact with the protein is remarkably uniform for four of the proteins, indicating a similarity of groups exposed during unfolding. One protein, staphylococcus nuclease, is anomalous in almost all respects. In general, the strength of the interaction with guanidinium is about twice that of urea, which is about twice that of trimethylamine-N-oxide and sucrose. Arguments are presented for the use of volume fractions in equilibrium equations and the ignoring of activity coefficients of the cosolvent. It is shown in the Appendix that both the excluded volume and the direct interaction can be extracted in a unified way from the McMillan-Mayer formula for the second virial coefficient.  相似文献   

19.
The full or partial unfolding of proteins is widely believed to play an essential role in three‐dimensional domain swapping. However, there is little research that has rigorously evaluated the association between domain swapping and protein folding/unfolding. Here, we examined a kinetic model in which domain swapping occurred via the denatured state produced by the complete unfolding of proteins. The relationships between swapping kinetics and folding/unfolding thermodynamics were established, which were further adopted as criteria to show that the proposed mechanism dominates in three representative proteins: Cyanovirin‐N (CV‐N), the C‐terminal domain of SARS‐CoV main protease (Mpro‐C), and a single mutant of oxidized thioredoxin (Trx_W28Aox).  相似文献   

20.
The absence of detectable kinetic and equilibrium folding intermediates by optical probes is commonly taken to indicate that protein folding is a two-state process. However, for some small proteins with apparent two-state behavior, unfolding intermediates have been identified in native-state hydrogen exchange or kinetic unfolding experiments monitored by nuclear magnetic resonance. Rd-apocytochrome b(562), a four-helix bundle, is one such protein. Here, we found another unfolding intermediate for Rd-apocytochrome b(562). It is based on a cooperative transition of (15)N chemical shifts of amide protons as a function of urea concentrations before the global unfolding. We have solved the high-resolution structure of the protein at 2.8 M urea, which is after this cooperative transition but before the global unfolding. All four helices remained intact, but a number of hydrophobic core residues repacked. This intermediate provides a possible structural interpretation for the kinetic unfolding intermediates observed using nuclear magnetic resonance methods for several proteins and has important implications for theoretical studies of protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号