首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fine structure of the modified sperm and spermatogenesisof four sympatric species of Siphonaria is described. The morphologyof the sperm of all species is very similar. The head, whichis about 6 µm long, is composed of a nucleus with fibrouschromatin capped by an acrosome (about 1 µm long) comprisedof an acrosomal pedestal and apical vesicle. The midpiece hasa mitochondrial derivative which surrounds a single glycogenhelix, posterior to which is a glycogen piece. Although differencesbetween each species exist, the value of sperm morphology forpurposes of taxonomy in this genus is questioned. Comparisonwith other basommatophorans however suggests that sperm morphologymay be of value at a higher taxo-nomic level. The morphologicalchanges that occur during spermatogenesis are similar to thosedescribed for other molluscs with modified sperm, except thatduring early spermiogenesis the Golgi body and smooth endoplasmicreticulum become highly developed. This proliferation of theSER and Golgi occurs at the same time as elongation of the spermatid.Throughout spermatogenesis, the germ cells are closely associatedwith a somatic cell which, because of structural similaritieswith the somatic cell of mammalian seminiferous epithelium,has been termed a Sertoli cell. After the spermatids have beenreleased from the Sertoli cells of the testis, maturation continuesin the hermaphrodite duct where the acrosome reaches its finalsize and glycogen accumulates in the glycogen compartment ofthe mid-piece. (Received 25 April 1990; accepted 1 September 1990)  相似文献   

2.
Summary Features shared between the sperm of Ranina ranina and of the so-called higher Brachyura (the Oxyrhyncha — Cancridea — Brachygnatha assemblage, OCB) include: (1) the large subspheroidal acrosome (a synapomorphy of the Raninoidea + the OCB contrasting with the disc-shaped Dromioidea acrosome); (2) enclosure of the acrosome by a thin layer of cytoplasm which is in turn cupped by the nucleus; (3) extension of the nucleus as lateral arms and as a posterior median process (this process is absent in the more advanced families, including portunids); (4) extension of the cytoplasm into the basal region of each nuclear arm; and (5) topographical equivalence and presumed homology of components of the acrosome, viz. the electron dense capsule; inner and outer dense zones surrounding the longitudinal axis; peripheral vesicular contents; a perforate or, in Portunus, an imperforate, apical operculum; subopercular- or subcap-zone; and a basally open subacrosomal chamber enclosing perforatorial material. Significant differences of the Ranina sperm from those of the OCB, including Portunus, are: (1) anterior termination of the subacrosomal space at the equator of the acrosome and its conical form (plesiomorphy?), in the latter assemblage reaching the operculum; (2) differentiation within the subacrosomal material of a coiled, filiform putative perforatorium (plesiomorphy or apomorphic homoplasy with Anaspidacea?) whereas the entire subacrosomal contents in the OCB form a stout perforatorial rod; (3) subdivision from the acrosome vesicle in Ranina of a posterior acrosomal chamber with differentiation of the walls of this, lining the subacrosomal chamber, as longitudinal corrugations (Raninoidea autapomorphies); and (4) plesiomorphic persistence of numerous well developed, simple mitochondria in contrast to their degeneration, with greater development of a myelin-like lamellar complex, in the OCB. Spermatologically, the Raninoidea thus appear to be the plesiomorphic adelphotaxon of the Oxyrhyncha — Cancridea — Brachygnatha assemblage.Abbreviations a acrosome - ar acrosomal rays - asr anterior subacrosomal region - c centriole - ca capsule - cab central acrosomal body - ce cytoplasmic extension into arm - co corrugations - DNA DNA of arm - dt degenerating microtubules - ine disrupted inner nuclear envelope - iz inner dense zone - I part of lamellar complex - la lateral arm - m mitochondrion - npm combined nuclear and plasma membranes - o operculum - oz outer dense zone - p perforatorium - pv peripheral contents of acrosome vesicle - pcv posterior chamber of acrosome vesicle - pmp posterior median process - pp putative perforatorium - psr posterior subacrosomal region - sz subopercular zone - tr thickened ring  相似文献   

3.
Sperm from the crayfish, Pacifastacus leniusculus, resemble other reptantian sperm in that they are composed of an acrosome, subacrosomal region, nucleus, membrane lamellar complex, and spikes which radiate from the nuclear compartment. The acrosome (PAS positive vesicle) can be subdivided into three regions: the apical cap, crystalline inner acrosomal material, and outer acrosomal material which is homogeneous except for a peripheral electron dense band. The nucleus contains uncondensed chromatin and bundles of microtubules which project into the spikes. The orientation of the microtubule bundles relative to the nuclear envelope near the base of the subacrosomal region suggests that the nuclear envelope may function in the organization of the spike microtubules.  相似文献   

4.
Sperm ultrastructure is described for the first time in representativesof the pulmonate ‘limpet’ families Trimusculidae(Trimusculus costatus, T. reticulatus: marine) and Ancylidae(Burnupia stenochorias, Ancylus fluviatilis: freshwater). Allshow characteristic heterobranch sperm features (a spheroidalacrosomal vesicle supported by an acrosomal pedestal; a helicallykeeled nucleus and a complex, very elongate midpiece featuringparacrystalline and matrix layers sheathing the axoneme, coarsefibers and one or more glycogen helices). Posterior to the midpiece,a glycogen piece (axoneme sheathed by glycogen granules) andannulus are also present in all species. Taxonomically usefuldifferences in the shape and dimensions of the acrosome, nucleusand midpiece occur between the species. Results support thedecision of recent workers to transfer the Trimusculidae fromthe Siphonarioidea to a separate superfamily Trimusculoidea(characteristic sperm features including: narrow acrosomal pedestaloverlapping with nuclear apex; heavily keeled nucleus; midpiecewith strongly projecting secondary and glycogen helices). Therelationship of the Trimusculoidea to other pulmonates, as indicatedby sperm ultrastructure, remains uncertain largely because comparativedata for several important groups are unavailable. Spermatozoaof the two ancylids most closely resemble those of other investigatedplanor-boideans and to a lesser extent, those of the Lym-naeoidea.However, differences between Burnupia stenochorias (unique(?)accessory structure on the acrosomal pedestal; glycogen wedgeswithin the nuclear fossa; other features similar to planorbids)and Ancylus fluviatilis (all sperm features very similar toplanorbids) suggests that these patelliform ancylids are notclosely related. (Received 20 November 1997; accepted 23 January 1998)  相似文献   

5.
The fine structure of the mature sperm of the holothurian, Cucumaria miniata, and the ophiuroid, Ophiopholis aculeata, is described with particular reference to their acrosomal and centriolar satellite complexes, and compared to the sperm of other echinoderms. In Cucumaria, the acrosome is in the form of a diffuse acrosomal vesicle. It is unusual in that it apparently lacks an acrosomal membrane. A membrane separating the acrosomal vesicle from the periacrosomal material may not be equivalent to a typical inner acrosomal membrane. In Ophiopholis, the acrosome is dense, with some internal substructure, and is enclosed by a complete acrosomal membrane. In both species, the acrosome is partially surrounded by an amorphous periacrosomal mass. There is a notable absence of a subacrosomal depression and associated structures as found in other echinoderm sperm. The centriolar satellite complex (CSC) is essentially identical in both species. A reconstruction of the CSC is presented. The CSC consists of nine satellites radiating angularly from the distal centriole, each bifurcating at a dense node before inserting on a marginal ring containing circumferential microtubules. The ring is probably a cytoskeletal element. Immediately below the satellites are nine Y-shaped connectives. connecting each of the axonemal alpha doublets to the flagellar membrane.  相似文献   

6.
The acrosomal complex of ostrich sperm consists of a small, cone-shaped acrosome and a slender, cylindrical perforatorium housed within a deep endonuclear canal. The perforatorium is almost exclusively endonuclear in location and is only covered by the acrosome at its point of origin in the apical subacrosomal space. The development of the acrosome is generally similar to that described in other non-passerine birds. Small proacrosomal granules (vesicles) emanating from the Golgi apparatus coalesce to form a large, membrane-bound acrosomal vesicle filled with homogeneous, electron-dense material. The acrosomal vesicle attaches to the nucleus via a shallow depression and subsequently collapses to form the typical cap-like acrosome of non-passerine birds. In ostrich spermatids the endonuclear canal becomes obvious when the collapsed acrosomal vesicle has assumed a dumbbell-shaped appearance. The perforatorium, which originates from moderately electron-dense material contained within the apical subacrosomal space, expands within the deepening endonuclear canal. The material of the perforatorium does not originate in the form of an obvious granule as in chicken and budgerigar spermatids. Indications are that in ostrich spermatids the developing acrosome plays a role in the shaping of the tip of the nucleus. The perforatorium, however, appears to represent a residual structure that has no specifically identified function. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Sperm from the American lobster (Homarus americanus) are normally nonmotile. However, during fertilization, the sperm undergo a calcium-dependent acrosome reaction that propels them forward about 18 μMm. The reaction occurs in two phases, eversion and ejection, which take place too quickly to permit analysis by direct observation. The purposes of this study were to examine the structural changes occurring in sperm during the normal acrosome reaction and to determine the rate of the reaction using video microscopy. The reaction was induced in vitro by ionophore A23187 and recorded using a video system attached to a Nikon Nomarski interference microscope. Videotapes were played back frame by frame (30 frames/sec), and images of reactions from 10 sperm were analyzed. The acrosome reaction, including the eversion of the acrosomal vesicle and ejection of the subacrosomal material and nucleus, can be divided into 4 steps: (1) expansion of the apical cap followed by expansion of the remainder of the acrosomal cylinder; expansion of the cylinder begins at its apical end and proceeds toward its base, (2) eversion of the apical half of the acrosomal vesicle and initial contraction of the apical cap, (3) eversion of the basal half of the acrosomal vesicle, continued contraction of the apical cap, and ejection of the subacrosomal material and nucleus, and (4) final contraction of the apical cap and ejection of the acrosomal filament. During steps 2, 3, and 4, the mean forward movement of sperm is 12.7, 3.9, and 1.1 μMm, respectively. Although the time required to complete the reaction ranged from 0.66 to 5.16 s, most sperm reacted in less than 3. s, and these sperm were considered to have typical rates. For sperm that reacted in less than 3 s, both step 1 and step 4 take about 0.2 s and show little variation among sperm. the time required to complete steps 2 and 3 averaged 0.63 and 0.37 s, respectively. Forward movement of the sperm during the acrosome reaction is caused by eversion of the inner and outer acrosomal material and contraction of the apical cap. The protein(s) responsible for this contraction is not yet known. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Ultrastructural features of spermiogenesis and mature spermatozoaare described for the first time in a cirrate octopod. Comparisonwith other investigated cephalopod species shows that spermatozoaof Opisthoteuthis persephone Berry most closely resemble thoseof the genus Octopus. The shared features include: (1) an elongate,solid acrosome with internal banding and a prominent helicalkeel; (2) a straight, rod-like nucleus; (3) a short midpieceand (4) a post-mitochondrial (‘annular’) skirt.Of these, the acrosomal morphology is most significant taxo-nomically,as the internal banding of the acrosomal vesicle only occursin the Octopoda. Spermatozoa of Opisthoteuthis and Octopus differhowever in the extent of the internal banding of the acrosome(poorly developed in Opisthoteuthis) and substructure of theacrosomal keel (more complex in Opisthoteuthis). Surprisingly,the extensive fibrous plug of Octopus and Vampyroteuthis sperm,is not developed either in Opisthoteuthis or in Eledone. Resultsprovide additional support for the monophyly of the Octopodabut also hint at the possibility that some groups of in-cirratesmay not be as advanced as generally believed. (Received 6 July 1992; accepted 18 August 1992)  相似文献   

9.
Spermatozoa of the pulmonates Helix aspersa Müller andH. pomatia Linnaeus are examined in detail using transmissionelectron microscopy (TEM). Important features such as the acrosome,perinuclear sheath, nucleus and terminal region of the midpieceare described for the first time. Also presented are the firstultrastructural observations on spermatozoa from spermatophoresin any pulmonate gastropod (H. aspersa). No morphological differencescould be found between sperm taken from spermatophores and thosewithin the hermaphrodite duct in H. aspersa. Spermatozoa ofH. aspersa and H. pomatia snow all the characteristics of euthyneuranspermatozoa, namely: a helically-keeled nucleus; distinctivearrangement of acrosomal components (apical vesicle, acrosomalpedestal), and extremely elongate midpiece (axoneme and glycogenhelix enclosed by matrix and paracrystalline layers). The spermnucleus of both species is short, and the midpiece also formsthe terminal portion of the spermatozoon (glycogen piece absent).The extraordinary positioning of the acrosome in H. aspersa—reflectedbackwards from the nuclear apex—is not observed in H.pomatia, though a perinuclear sheath (possibly another acrosomalcomponent) is present in sperm of both species. Helix spermatozoaare compared with other euthyneuran sperm and briefly discussedfrom the systematic viewpoint. Present address: Department of Zoology, St. Lucia, 4067, Brisbane,OLD, Australia (Received 23 May 1988; accepted 17 August 1988)  相似文献   

10.
When the spermatozoon of M glacialis contacts the mature oocyte jelly it adheres to it. Following this, there is a slight tumefaction of the acrosome, which is followed by the disruption of the apical acrosomal vesicle and cytoplasmic membranes. Acrosomal vesicle contents are liberated and spread along the outer surface of the oocyte jelly. Meanwhile, the acrosomal process begins to extend, penetrates all the jelly extension, then the vitelline layer, and finally contacts the cytoplasmic egg membrane. Nevertheless, the sperm cell continues lying at the outer border of the jelly. From the beginning of the acrosome reaction the dense and finely fibrillar subacrosomal material is connected, by some expansions, to the basal acrosomal vesicle membrane. Both nuclear and mitochondrial diameters have diminished.  相似文献   

11.
Spermatogenic ultrastructure in the marine bivalve mollusc Myochama anomioides (Myochamidae) is described and contrasted with other bivalves, especially other euheterodonts. Small (0.1 μm diameter), primary proacrosomal vesicles produced in spermatocytes give rise to much larger (0.4 μm diameter) secondary proacrosomal vesicles in early spermatids, which in turn form the dished‐shaped, definitive acrosomal vesicle (diameter 1.0 μm) of later spermatids. The acrosomal vesicle acquires a deposit of subacrosomal material and comes to lie close to or in contact with the plasma membrane. The acrosomal complex (acrosomal vesicle + subacrosomal material) initially positions itself at the apex of the condensing, fibrous nucleus (the so‐called temporary acrosome position), but subsequently begins to move posteriorly. The condensing nucleus becomes markedly folded so that its apex is posteriorly orientated towards the migrating acrosomal complex and the midpiece (mitochondria and centrioles). The close spatial relationship of nuclear apex to acrosomal complex during this folding strongly suggests that acrosomal migration in M. anomioides is assisted, at least in part, by movement of the late spermatid nucleus. Similar nuclear folding has previously been demonstrated in an early stage of fertilization in another anomalodesmatan (Laternula limicola) raising the possibility that one event might be a reversal of the other.  相似文献   

12.
Proacrosomal vesicles form during the pachytene stage, being synthetized by the Golgi complex in Glycymeris sp., and by both the Golgi and the rough endoplasmic reticulum in Eurhomalea rufa. During early spermiogenesis, a single acrosomal vesicle forms and its apex becomes linked to the plasma membrane while it migrates. In Glycymeris sp., the acrosomal vesicle then turns cap-shaped (1.8 μm) and acquires a complex substructure. In E. rufa, proacrosomal vesicles differentiate their contents while still at the premeiotic stage; as the acrosomal vesicle matures and its contents further differentiate, it elongates and becomes longer than the nucleus (3.2 μm), while the subacrosomal space develops a perforatorium. Before condensation, chromatin turns fibrillar in Glycymeris sp., whereas it acquires a cordonal pattern in E. rufa. Accordingly, the sperm nucleus of Glycymeris sp. is conical and elongated (8.3 μm), and that of E. rufa is short and ovoid (1.1 μm). In the midpiece (Glycymeris sp.: 1.1 μm; E. rufa: 0.8 μm), both species have four mitochondria encircling two linked orthogonal (Glycymeris sp.) or orthogonal and tilted (30–40°; E. rufa) centrioles. In comparison with other Arcoida species, sperm of Glycymeris sp. appear distinct due to the presence of an elongated nucleus, a highly differentiated acrosome, and four instead of five mitochondria. The same occurs with E. rufa regarding other Veneracea species, with the acrosome of the mature sperm strongly resembling that of the recent Mytilinae. Electronic Publication  相似文献   

13.
Unlike the primitive type of spermatozoon found in most polychaetes, the spermatozoon of Autolytus has a bilateral symmetry with elongated nucleus, and the mitochondria surround the posterior part of the nucleus. A rather large disk-shaped acrosome is situated along one side of the anterior part of the nucleus. From the anterior margin of the distal centriole emerge long striated rootlets, which run along the nuclear envelope to the anterior part of the nucleus. The spermatozoon of Chitinopoma serrula has an elongated, slightly bent nucleus, a thimble-like acrosome apically on the anterior surface of the nucleus, and an elongated middle piece containing 4 rod-like mitochondria developed from spherical mitochondria surrounding the basal part of the tail flagellum. In the spermatozoon of Capitella capitata, both nucleus and middle piece are elongated compared to the primitive type. The large and conical acrosome is placed asymmetrically at the nucleus and consists of an acrosomal vesicle and subacrosomal substance. The greater part of the middle piece forms a collar around the initial part of the tail flagellum. The cytoplasm of the collar contains granular material. One or two small mitochondria lie around the 2 centrioles at the base of the nucleus.

These types of spermatozoa represent early steps in the evolution of modified spermatozoa combined with changed biology of reproduction. The modified spermatozoa are larger than the primitive ones.  相似文献   

14.
摘要:为了解乌梢蛇(Zaocys dhumnades)精子形成的规律,用透射电镜对其头部超微结构进行了观察。结果表明,乌梢蛇精子头部形成可分为4个阶段:阶段Ⅰ,前顶体囊泡内的颗粒物质融合形成1个顶体颗粒而发育为顶体囊泡,随着顶体囊泡的增大,在顶体囊泡与核膜之间形成了致密的纤维物质层。阶段Ⅱ,顶体囊泡变扁平,顶体颗粒分散...  相似文献   

15.
John M. Healy 《Zoomorphology》1982,101(3):197-214
Summary Spermiogenesis of the architectonicid Philippia (Psilaxis) oxytropis was studied using transmission electron microscopy. Both spermatids and mature sperm of Philippia show features comparable to sperm/spermatids of euthyneuran gastropods (opisthobranchs, pulmonates) and not mesogastropods (with which the Architectonicidae are commonly grouped). These features include: (1) Accumulation of dense material on the outer membrane of anterior of the early spermatid nucleus — this material probably incorporated into the acrosome; (2) Structure of the unattached and attached spermatid acrosome (apical vesicle, acrosomal pedestal) accompanied by curved (transient) support structures; (3) Formation of the midpiece by individual mitochondrial wrapping around the axonemal complex, and the subsequent fusion and metamorphosis of the mitochondria to form the midpiece; (4) Presence of periodically banded coarse fibres surrounding the axonemal doublets and intra-axonemal rows of granules. A glycogen piece occurs posterior to the midpiece but is a feature observed in both euspermatozoa of mesogastropods (and neogastropods) and in sperm of some euthyneurans.Despite the lack of paracrystalline material or glycogen helices within the midpiece (both usually associated with sperm of euthyneurans), the features of spermiogenesis and sperm listed indicate that the Architectonicidae may be more appropriately referable to the Euthyneura than the Prosobranchia.Abbreviations a acrosome - ap anterior region of acrosomal pedestal - as support structures of spermatid acrosome - av apical vesicle of acrosome (acrosomal vesicle of un-attached acrosome) - ax axoneme - b basal region of acrosomal pedestal - c centriole - cf coarse fibres - cr cristal derivative of midpiece - db intra-axonemal dense granules - drs dense ring structure - gg glycogen granules - gp glycogen piece - G Golgi complex - m mitochondrion - mt microtubules - n nucleus - pm plasma membrane - sGv small Golgi vesicles  相似文献   

16.
The fine structure of the sperm and spermatogenesis in threespecies of Donax (D. madagascariensis, D. sordidus and D. serra)are described. Although the morphology of the sperm of all speciesis very similar, each has unique features. Donax madagascariensisand D. sordidus reportedly hybridize in regions of sympatryand their spermatozoa are morphologically closer to one anotherthan to D. serra. All sperm are of the primitive type with ahead(about 2 µmu; long), mid-piece of four mitochondria andtail. The head comprises a barrel-shaped nucleus which is cappedby a small, complex acrosome. The structure of the acrosomeis typical of heterodont bivalves. During spermatogenesis thepattern of nuclear chromatin condensation is granular. Glycogenfirst appears in the cytoplasm of spermatids, and in the maturesperm is sited in the mid-piece and base of the acrosome. (Received 15 May 1989; accepted 25 June 1989)  相似文献   

17.
Animal sperm show remarkable diversity in both morphology and molecular composition. Here we provide the first report of intense intrinsic fluorescence in an animal sperm. The sperm from a semi‐aquatic insect, the water strider, Aquarius remigis, contains an intrinsically fluorescent molecule with properties consistent with those of flavin adenine dinucleotide (FAD), which appears first in the acrosomal vesicle of round spermatids and persists in the acrosome throughout spermiogenesis. Fluorescence recovery after photobleaching reveals that the fluorescent molecule exhibits unrestricted mobility in the acrosomal vesicle of round spermatids but is completely immobile in the acrosome of mature sperm. Fluorescence polarization microscopy shows a net alignment of the fluorescent molecules in the acrosome of the mature sperm but not in the acrosomal vesicle of round spermatids. These results suggest that acrosomal molecules are rearranged in the elongating acrosome and FAD is incorporated into the acrosomal matrix during its formation. Further, we followed the fate of the acrosomal matrix in fertilization utilizing the intrinsic fluorescence. The fluorescent acrosomal matrix was observed inside the fertilized egg and remained structurally intact even after gastrulation started. This observation suggests that FAD is not released from the acrosomal matrix during the fertilization process or early development and supports an idea that FAD is involved in the formation of the acrosomal matrix. The intrinsic fluorescence of the A. remigis acrosome will be a useful marker for following spermatogenesis and fertilization. J. Cell. Physiol. 226: 999–1006, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
Spermiogenesis, in particular the head differentiation of Diplometopon zarudnyi, was studied at the ultrastructural level by Transmission Electron Microscope (TEM). The process includes acrosomal vesicle development, nuclear elongation, chromatin condensation and exclusion of excess cytoplasm. In stage I, the proacrosomal vesicle occurs next to a shallow fossa of the nucleus, and a dense acrosomal granule forms beneath it. This step commences with an acrosome vesicle forming from Golgi transport vesicles; simultaneously, the nucleus begins to move eccentrically. In stage II, the round proacrosomal vesicle is flattened by projection of the nuclear fossa, and the dense acrosomal granule diffuses into the vesicle as the fibrous layer forms the subacrosomal cone. Circular manchettes surrounded by mitochondria develop around the nucleus, and the chromatin coagulates into small granules. The movement of the nucleus causes rearrangement of the cytoplasm. The nucleus has uniform diffuse chromatin with small indices of heterochromatin. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. In stage III, the front of the elongating nucleus protrudes out of the spermatid and is covered by the flat acrosome; coarse granules replace the small ones within the nucleus. One endonuclear canal is present where the perforatorium resides. In stage IV, the chromatin concentrates to dense homogeneous phase. The circular manchette is reorganized longitudinally. The Sertoli process covers the acrosome and the residues of the cytoplasmic lobes are removed. In stage V, the sperm head matures.  相似文献   

20.
Patelloida pygmaea (Dunker) and its closely allied species,P. heroldi (Dunker) and P. conulus (Dunker) have caused nomenclaturalconfusion because of their variable shell morphology and distinctivehabitats. According to current nomenclature, these species ofPatelloida have been synonymized and treated as one specieswith two ecological forms. Patelloida pygmaea lives on the shellof Crassostrea gigas (Ostreidae), P. pygmaea form heroldi occurson intertidal rocks on sheltered shores and P. pygmaea formconulus is found on the shell of Batillaria multiformis (Batillariidae).Their taxonomic relationships and possible species status are,however, unclear. Using two mitochondrial genes (fragments ofCOI and 16S ribosomal RNA; total 1192 sites), we analysed 88specimens of P. pygmaea, P. pygmaea form heroldi and P. pygmaeaform conulus from 37 localities in East Asia. In the resultingmolecular phylogenetic trees, the specimens of Patelloida fallinto four clades with high bootstrap probabilities; these cladescorrespond taxonomically to P. pygmaea, P. conulus, P. heroldiand a fourth previously unrecognized taxon, Patelloida ryukyuensisn. sp., described here. A minimum-spanning network for 29 uniquemitochondrial COI haplotypes obtained from 45 specimens in thesame bay in central Japan form three distinct clusters, consistingof P. pygmaea, P. conulus and P. heroldi, respectively. Thissuggests that reproductive isolation has been established betweeneach group. A detailed examination of radular and shell morphologiesof the four taxa clarifies the morphological distinction betweenthese species. The four species form a rather young clade inthe genus Patelloida that diverged during the Pliocene. Theyprovide an example of habitat segregation in a restricted marineenvironment. (Received 21 December 2004; accepted 11 March 2005)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号