首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IR spectra are reported for preparations of Gramicidin A and malonyl Gramicidin A incorporated as the channel state in phospholipid structures. In this preparation Gramicidin A has already been shown to be unequivocally in the single-stranded beta-helical conformation. The result is an amide I frequency of 1633 +/- 1 cm-1. This demonstrates that the single-stranded beta-helix has an amide I frequency that has previously been considered to be diagnostic of antiparallel double-stranded beta-helix and of beta-sheet structures.  相似文献   

2.
Zhao M  Mu W  Jiang B  Zhou L  Zhang T  Lu Z  Jin Z  Yang R 《Bioresource technology》2011,102(2):1757-1764
The soil bacterium Arthrobacter aurescens SK 8.001 produces inulin fructotransferase (IFTase), and liquid chromatography-mass spectrometry (LC-MS) and carbon-13 nuclear magnetic resonance (13C NMR) analysis demonstrated that the main product of the enzyme was difructose anhydride III (DFA III). The IFTase was purified by ethanol precipitation, DEAE Sepharose Fast Flow, and Superdex 200 10/300 GL gel chromatography. Its molecular mass was estimated to be 40 kDa by SDS-PAGE and 35 kDa by gel filtration. The enzyme showed maximum activity at pH 5.5 and 60-70 °C, and retained 86.5% of its initial activity after incubation at 60 °C for 4 h. Chemical modification results suggested that a tryptophan residue is essential to enzyme activity. The N-terminal amino acid sequence was determined as AEGAKASPLNSPNVYDVT. The kinetic values, Km and Vmax, were estimated to be 0.52 mM and 0.3 μmol/ml min. Nystose was observed to be the smallest substrate for the produced IFTase. This IFTase provides a promising way to utilize inulin for the production of DFA III.  相似文献   

3.
Inulin fructotransferase (IFTase) has received considerable attention due to its ability to catalyse inulin hydrolysis to difructose anhydride (DFA III), a natural low-calorie functional sweetener. In the present study, for the first time, we describe the expression of IFTase in Pichia pastoris under the control of the formaldehyde dehydrogenase 1 promoter (PFLD1). Using this system, we achieved efficient secretion with four substrate fed-batch strategies in a 3-L fermenter. The co-feeding induction strategy with methylamine hydrochloride and methanol achieved the maximum extracellular IFTase activity of 62.72 U mL?1, which was 3.2-fold higher than that obtained with the wild-type strain. In addition to methanol, carbon sources such as glucose and glycerol could also be utilised by PFLD1-controlled P. pastoris for IFTase production using methylamine hydrochloride induction. However, we found that glycerol and glucose should be strictly controlled at low concentrations of 0.5–1.5 % (v/v) and 1–1.5 % (w/v), respectively. The use of glycerol and glucose demonstrated that P. pastoris was also attractive for IFTase production via methanol-free cultivation strategies. This study may provide the basis for the industrial use of this recombinant IFTase for the production of DFA III.  相似文献   

4.
Several polypeptides have been found to adopt an unusual domain structure known as the parallel beta-helix. These domains are characterized by parallel beta-strands, three of which form a single parallel beta-helix coil, and lead to long, extended beta-sheets. We have used ATR-FTIR (attenuated total reflectance-fourier transform infrared spectroscopy) to analyze the secondary structure of representative examples of this class of protein. Because the three-dimensional structures of parallel beta-helix proteins are unique, we initiated this study to determine if there was a corresponding unique FTIR signal associated with the parallel beta-helix conformation. Analysis of the amide I region, emanating from the carbonyl stretch vibration, reveals a strong absorbance band at 1638 cm(-1) in each of the parallel beta-helix proteins. This band is assigned to the parallel beta-sheet structure. However, components at this frequency are also commonly observed for beta-sheets in many classes of globular proteins. Thus we conclude that there is no unique infrared signature for parallel beta-helix structure. Additional contributions in the 1638 cm(-1) region, and at lower frequencies, were ascribed to hydrogen bonding between the coils in the loop/turn regions and amide side-chain interactions, respectively. A 13-residue peptide that forms fibrils and has been proposed to form beta-helical structure was also examined, and its FTIR spectrum was compared to that of the parallel beta-helix proteins.  相似文献   

5.
Navarro E  Fenude E  Celda B 《Biopolymers》2004,73(2):229-241
Alternating sequences of D and L residues in peptides are directly related to the formation of several kinds of regular helical conformations usually called beta-helices. The major feature of these structures is that they can be associated with the transmembrane ion-conducting channel activity in some natural antibacterial peptides. The study of alternating D,L synthetic peptides is critical to understand how factors such as surrounding media, main chain length, type of side chain and terminal groups, among others, can determine the adoption of a specific kind of beta-helix. Early studies pointed out that the peptides Boc-(D-NLeu-L-NLeu)(6)-D-MeNLe-L-Nl-D-Nl-L-Nl-OMe (Boc: tert-butyloxycarbonyl) and Boc-L-Nle-(D-Nle-L-Nle)(5)-D-MeNle-L-Nle-D-Nle-L-Nle-OMe adopt in chloroform a unique detectable conformation single beta(4.4)- and double beta(5.6) upward arrow downward arrow -helix, respectively. The influence of terminal groups on the final stable conformation of N-formylated peptides has been studied in this work. The initial basic NMR data analysis of a synthetic alternating D,L-oligopeptide with ten norleucines, N-methylated on the residue 7 and having HCO- and -OMe as terminal groups clearly indicates the coexistence of two different conformations in equilibrium. NMR data and molecular dynamics calculations point to a dimeric antiparallel beta-helix structure beta(5.6) upward arrow downward arrow for the main conformation. On the other hand, NMR data suggest a single beta-helix structure beta(4.4) for the second conformation. Finally, a thermodynamic analysis of the equilibrium between both conformations has been carried out by one-dimensional NMR measurements at ten different temperatures. The temperature at which 50% of dimer conformation is dissociated is 319 K. In addition, the dimer-monomer equilibrium curve obtained shows a DeltaG>0 for the whole range of studied temperatures, and its behavior can be considered similar to the thermodynamic denaturation protein processes.  相似文献   

6.
Protein fold recognition is an important step towards understanding protein three-dimensional structures and their functions. A conditional graphical model, i.e., segmentation conditional random fields (SCRFs), is proposed as an effective solution to this problem. In contrast to traditional graphical models, such as the hidden Markov model (HMM), SCRFs follow a discriminative approach. Therefore, it is flexible to include any features in the model, such as overlapping or long-range interaction features over the whole sequence. The model also employs a convex optimization function, which results in globally optimal solutions to the model parameters. On the other hand, the segmentation setting in SCRFs makes their graphical structures intuitively similar to the protein 3-D structures and more importantly provides a framework to model the long-range interactions between secondary structures directly. Our model is applied to predict the parallel beta-helix fold, an important fold in bacterial pathogenesis and carbohydrate binding/cleavage. The cross-family validation shows that SCRFs not only can score all known beta-helices higher than non-beta-helices in the Protein Data Bank (PDB), but also accurately locates rungs in known beta-helix proteins. Our method outperforms BetaWrap, a state-of-the-art algorithm for predicting beta-helix folds, and HMMER, a general motif detection algorithm based on HMM, and has the additional advantage of general application to other protein folds. Applying our prediction model to the Uniprot Database, we identify previously unknown potential beta-helices.  相似文献   

7.
Antifreeze proteins (AFPs) designate a class of proteins that are able to bind to and inhibit the growth of macromolecular ice. These proteins have been characterized from a variety of organisms. Recently, the structures of AFPs from the spruce budworm (Choristoneura fumiferana) and the yellow mealworm (Tenebrio molitor) have been determined by NMR and X-ray crystallography. Despite nonhomologous sequences, both proteins were shown to consist of beta-helices. We review the structures and dynamics data of these two insect AFPs to bring insight into the structure-function relationship and explore their beta-helical architecture. For the spruce budworm protein, the fold is a left-handed beta-helix with 15 residues per coil. The Tenebrio molitor protein consists of a right-handed beta-helix with 12 residues per coil. Mutagenesis and structural studies show that the insect AFPs present a highly rigid array of threonine residues and bound water molecules that can effectively mimic the ice lattice. Comparisons of the newly determined ryegrass and carrot AFP sequences have led to models suggesting that they might also consist of beta-helices, and indicate that the beta-helix might be used as an AFP structural motif in nonfish organisms.  相似文献   

8.
Neurodegenerative diseases are often associated with the formation of highly insoluble aggregates. Despite the efforts devoted to the characterization of these aggregates, their structure remains elusive. Several neurodegenerative diseases are characterized by the expansion of CAG repeats, which code for Gln. Among the structural models proposed for the aggregates observed in polyQ-linked diseases, the nanotube beta-helix model proposed by Perutz and colleagues Proc Natl Acad Sci U S A 2002;99:5591-5595 has been influential. In the present study, the stability of this beta-helix model has been investigated by performing molecular dynamics simulations on polyQ fragments of different lengths. The results indicate that models shorter than two full beta-helix turns are unstable and collapse toward irregular structures. On the other hand, longer beta-helix models, containing more than 40 residues, achieve a dynamic regular structure. This finding is in line with the observed threshold of Gln repeats (approximately 40) correlated with the insurgence of the disease. Notably, the structure of the final state of the models longer than 40 residues strictly depends on their size. A compact stable ellipsoidal structure is formed by the model made of two full helical turns (41 residues), whereas water filled tubular structures emerge from simulation on longer polypeptides. These results have been interpreted taking into account the experimental data on polyQ aggregates. A structural interpretation of the literature data has been proposed by assuming that different beta-helical models are involved in the different stages of the aggregation process.  相似文献   

9.
Serine acetyltransferase (SAT) catalyzes the first step of cysteine synthesis in microorganisms and higher plants. Here we present the 2.2 A crystal structure of SAT from Escherichia coli, which is a dimer of trimers, in complex with cysteine. The SAT monomer consists of an amino-terminal alpha-helical domain and a carboxyl-terminal left-handed beta-helix. We identify His(158) and Asp(143) as essential residues that form a catalytic triad with the substrate for acetyl transfer. This structure shows the mechanism by which cysteine inhibits SAT activity and thus controls its own synthesis. Cysteine is found to bind at the serine substrate site and not the acetyl-CoA site that had been reported previously. On the basis of the geometry around the cysteine binding site, we are able to suggest a mechanism for the O-acetylation of serine by SAT. We also compare the structure of SAT with other left-handed beta-helical structures.  相似文献   

10.
Navarro E  Fenude E  Celda B 《Biopolymers》2002,64(4):198-209
Conformational characteristics of alternating D,L linear peptides are of particular interest because of their capacity to form transmembrane channels with different transport properties, as some natural antibiotics do. Single- and double-stranded beta-helical structures are common for alternating D,L peptides. The stability of the beta-helix depends on several structural factors, such as the backbone peptide length, type and position of side chains, and nature of terminal groups. The NMR and molecular dynamics solution conformation of a synthetic alternating D,L-oligopeptide with 15 norleucines (XVMe) has been used as a model to get insight in to the conformational features of double-stranded beta-helix structures. The NH chemical shift values (delta(NH)) and long-range nuclear Overhauser effects (NOE) cross peaks, in particular interstrand connectivities, clearly point to an antiparallel double-stranded beta-helix for the XVMe major conformation in solution. An extensive set of distances (from NOE cross peaks) and H-bonds (from delta(NH)) has been included in the molecular dynamics calculations. The experimental NMR data and theoretical calculations clearly indicate that the most probable conformation of XVMe in solution is a double-strand antiparallel beta(5.6) increasing decreasing-helix structure.  相似文献   

11.
Phages infecting the polysialic acid (polySia)-encapsulated human pathogen Escherichia coli K1 are equipped with capsule-degrading tailspikes known as endosialidases, which are the only identified enzymes that specifically degrade polySia. As polySia also promotes cellular plasticity and tumor metastasis in vertebrates, endosialidases are widely applied in polySia-related neurosciences and cancer research. Here we report the crystal structures of endosialidase NF and its complex with oligomeric sialic acid. The structure NF, which reveals three distinct domains, indicates that the unique polySia specificity evolved from a combination of structural elements characteristic of exosialidases and bacteriophage tailspike proteins. The endosialidase assembles into a catalytic trimer stabilized by a triple beta-helix. Its active site differs markedly from that of exosialidases, indicating an endosialidase-specific substrate-binding mode and catalytic mechanism. Residues essential for endosialidase activity were identified by structure-based mutational analysis.  相似文献   

12.
Campylobacter jejuni is highly unusual among bacteria in forming N-linked glycoproteins. The heptasaccharide produced by its pgl system is attached to protein Asn through its terminal 2,4-diacetamido-2,4,6-trideoxy-d-Glc (QuiNAc4NAc or N,N'-diacetylbacillosamine) moiety. The crucial, last part of this sugar's synthesis is the acetylation of UDP-2-acetamido-4-amino-2,4,6-trideoxy-d-Glc by the enzyme PglD, with acetyl-CoA as a cosubstrate. We have determined the crystal structures of PglD in CoA-bound and unbound forms, refined to 1.8 and 1.75 A resolution, respectively. PglD is a trimer of subunits each comprised of two domains, an N-terminal alpha/beta-domain and a C-terminal left-handed beta-helix. Few structural differences accompany CoA binding, except in the C-terminal region following the beta-helix (residues 189-195), which adopts an extended structure in the unbound form and folds to extend the beta-helix upon binding CoA. Computational molecular docking suggests a different mode of nucleotide-sugar binding with respect to the acetyl-CoA donor, with the molecules arranged in an "L-shape", compared with the "in-line" orientation in related enzymes. Modeling indicates that the oxyanion intermediate would be stabilized by the NH group of Gly143', with His125' the most likely residue to function as a general base, removing H+ from the amino group prior to nucleophilic attack at the carbonyl carbon of acetyl-CoA. Site-specific mutations of active site residues confirmed the importance of His125', Glu124', and Asn118. We conclude that Asn118 exerts its function by stabilizing the intricate hydrogen bonding network within the active site and that Glu124' may function to increase the pKa of the putative general base, His125'.  相似文献   

13.
In this work, three novel genes encoding di-d-fructofuranose-1,2′:2,1′-dianhydride (DFA I)-forming inulin fructotransferases (IFTases) from Nocardiaceae family, including Nocardioides luteus, Nocardioides sp. JS614, and Nocardioidaceae bacterium Broad-1, were cloned and expressed in Escherichia coli. The recombinant IFTases from N. luteus (NoluIFTase), Nocardioides sp. JS614 (NospIFTase), and N. bacterium Broad-1 (NobaIFTase) were purified, identified, and characterized. SDS-PAGE analysis showed that they had molecular weights of approximately 41–42 kDa, while gel filtration analysis indicated that their native molecular weights ranged from 50 to 62 kDa, suggesting that the three enzymes may be monomers. Their optimum pH values ranged from 5.5 to 6.0, similar to other DFA I-forming IFTases or di-d-fructofuranose-1,2′:2,3′-dianhydride (DFA III)-forming IFTases. NoluIFTase, NospIFTase, and NobaIFTase exhibited maximal activities at 55 °C, 50 °C, and 45 °C and were stable at 70 °C (for 15 min), 70 °C (187 min), and 55 °C (239 min), respectively. Furthermore, by comparing with our previously reported DFA I-forming IFTase, namely CcIFTase, a probable mechanism for the formation of DFA I by the three new enzymes was speculated, and CcIFTase will be selected for future structural resolution to illustrate the catalytic mechanism of DFA I-forming IFTases toward inulin.  相似文献   

14.
In this study, a new beta-helical model is proposed that explains the species barrier and strain variation in transmissible spongiform encephalopathies. The left-handed beta-helix serves as a structural model that can explain the seeded growth characteristics of beta-sheet structure in PrP(Sc) fibrils. Molecular dynamics simulations demonstrate that the left-handed beta-helix is structurally more stable than the right-handed beta-helix, with a higher beta-sheet content during the simulation and a better distributed network of inter-strand backbone-backbone hydrogen bonds between parallel beta-strands of different rungs. Multiple sequence alignments and homology modelling of prion sequences with different rungs of left-handed beta-helices illustrate that the PrP region with the highest beta-helical propensity (residues 105-143) can fold in just two rungs of a left-handed beta-helix. Even if no other flanking sequence participates in the beta-helix, the two rungs of a beta-helix can give the growing fibril enough elevation to accommodate the rest of the PrP protein in a tight packing at the periphery of a trimeric beta-helix. The folding of beta-helices is driven by backbone-backbone hydrogen bonding and stacking of side-chains in adjacent rungs. The sequence and structure of the last rung at the fibril end with unprotected beta-sheet edges selects the sequence of a complementary rung and dictates the folding of the new rung with optimal backbone hydrogen bonding and side-chain stacking. An important side-chain stack that facilitates the beta-helical folding is between methionine residues 109 and 129, which explains their importance in the species barrier of prions. Because the PrP sequence is not evolutionarily optimised to fold in a beta-helix, and because the beta-helical fold shows very little sequence preference, alternative alignments are possible that result in a different rung able to select for an alternative complementary rung. A different top rung results in a new strain with different growth characteristics. Hence, in the present model, sequence variation and alternative alignments clarify the basis of the species barrier and strain specificity in PrP-based diseases.  相似文献   

15.
The processive beta-strands and turns of a polypeptide parallel beta-helix represent one of the topologically simplest beta-sheet folds. The three subunits of the tailspike adhesin of phage P22 each contain 13 rungs of a parallel beta-helix followed by an interdigitated section of triple-stranded beta-helix. Long stacks of hydrophobic residues dominate the elongated buried core of these two beta-helix domains and extend into the core of the contiguous triple beta-prism domain. To test whether these side-chain stacks represent essential residues for driving the chain into the correct fold, each of three stacked phenylalanine residues within the buried core were substituted with less bulky amino acids. The mutant chains with alanine in place of phenylalanine were defective in intracellular folding. The chains accumulated exclusively in the aggregated inclusion body state regardless of temperature of folding. These severe folding defects indicate that the stacked phenylalanine residues are essential for correct parallel beta-helix folding. Replacement of the same phenylalanine residues with valine or leucine also impaired folding in vivo, but with less severity. Mutants were also constructed in a second buried stack that extends into the intertwined triple-stranded beta-helix and contiguous beta-prism regions of the protein. These mutants exhibited severe defects in later stages of chain folding or assembly, accumulating as misfolded but soluble multimeric species. The results indicate that the formation of the buried hydrophobic stacks is critical for the correct folding of the parallel beta-helix, triple-stranded beta-helix, and beta-prism domains in the tailspike protein.  相似文献   

16.
The ability to predict structure from sequence is particularly important for toxins, virulence factors, allergens, cytokines, and other proteins of public health importance. Many such functions are represented in the parallel beta-helix and beta-trefoil families. A method using pairwise beta-strand interaction probabilities coupled with evolutionary information represented by sequence profiles is developed to tackle these problems for the beta-helix and beta-trefoil folds. The algorithm BetaWrapPro employs a "wrapping" component that may capture folding processes with an initiation stage followed by processive interaction of the sequence with the already-formed motifs. BetaWrapPro outperforms all previous motif recognition programs for these folds, recognizing the beta-helix with 100% sensitivity and 99.7% specificity and the beta-trefoil with 100% sensitivity and 92.5% specificity, in crossvalidation on a database of all nonredundant known positive and negative examples of these fold classes in the PDB. It additionally aligns 88% of residues for the beta-helices and 86% for the beta-trefoils accurately (within four residues of the exact position) to the structural template, which is then used with the side-chain packing program SCWRL to produce 3D structure predictions. One striking result has been the prediction of an unexpected parallel beta-helix structure for a pollen allergen, and its recent confirmation through solution of its structure. A Web server running BetaWrapPro is available and outputs putative PDB-style coordinates for sequences predicted to form the target folds.  相似文献   

17.
Polygalacturonases specifically hydrolyze polygalacturonate, a major constituent of plant cell wall pectin. To understand the catalytic mechanism and substrate and product specificity of these enzymes, we have solved the x-ray structure of endopolygalacturonase II of Aspergillus niger and we have carried out site-directed mutagenesis studies. The enzyme folds into a right-handed parallel beta-helix with 10 complete turns. The beta-helix is composed of four parallel beta-sheets, and has one very small alpha-helix near the N terminus, which shields the enzyme's hydrophobic core. Loop regions form a cleft on the exterior of the beta-helix. Site-directed mutagenesis of Asp(180), Asp(201), Asp(202), His(223), Arg(256), and Lys(258), which are located in this cleft, results in a severe reduction of activity, demonstrating that these residues are important for substrate binding and/or catalysis. The juxtaposition of the catalytic residues differs from that normally encountered in inverting glycosyl hydrolases. A comparison of the endopolygalacturonase II active site with that of the P22 tailspike rhamnosidase suggests that Asp(180) and Asp(202) activate the attacking nucleophilic water molecule, while Asp(201) protonates the glycosidic oxygen of the scissile bond.  相似文献   

18.
A gene encoding inulin fructotransferase (di-D-fructofuranose 1,2': 2,3' dianhydride [DFA III]-producing IFTase, EC 4.2.2.18) from Bacillus sp. snu-7 was cloned. This gene was composed of a single, 1,353-bp open reading frame encoding a protein composed of a 40-amino acid signal peptide and a 410-amino acid mature protein. The deduced amino acid sequence was 98% identical to Arthrobacter globiformis C11-1 IFTase (DFA III-producing). The enzyme was successfully expressed in E. coli as a functionally active, His-tagged protein, and it was purified in a single step using immobilized metal affinity chromatography. The purified enzyme showed much higher specific activity (1,276units/mg protein) than other DFA III-producing IFTases. The recombinant and native enzymes were optimally active in very similar pH and temperature conditions. With a 103-min half-life at 60 degrees C, the recombinant enzyme was as stable as the native enzyme. Acidic residues and cysteines potentially involved in the catalytic mechanism are proposed based on an alignment with other IFTases and a DFA IIIase.  相似文献   

19.
Inulin fructotransferase (IFTase, EC 2.4.1.93) of Arthrobacter sp. A-6 was purified from a cell extract of the recombinant Escherichia coli DH5 /pDFE cells carrying the IFTase gene using heat treatment followed by gel filtration. The enzyme was purified 45-fold to apparent homogeneity with a recovery of 79%. SDS-PAGE yielded a single protein band of M r 46.5 kDa. The recombinant IFTase had a similar thermostability as the original enzyme from Arthrobacter sp. A-6.  相似文献   

20.
Uridine diphosphate-glucose pyrophosphorylase (UGPase) represents a ubiquitous enzyme, which catalyzes the formation of UDP-glucose, a key metabolite of the carbohydrate pathways of all organisms. In the protozoan parasite Leishmania major, which causes a broad spectrum of diseases and is transmitted to humans by sand fly vectors, UGPase represents a virulence factor because of its requirement for the synthesis of cell surface glycoconjugates. Here we present the crystal structures of the L. major UGPase in its uncomplexed apo form (open conformation) and in complex with UDP-glucose (closed conformation). The UGPase consists of three distinct domains. The N-terminal domain exhibits species-specific differences in length, which might permit distinct regulation mechanisms. The central catalytic domain resembles a Rossmann-fold and contains key residues that are conserved in many nucleotidyltransferases. The C-terminal domain forms a left-handed parallel beta-helix (LbetaH), which represents a rarely observed structural element. The presented structures together with mutagenesis analyses provide a basis for a detailed analysis of the catalytic mechanism and for the design of species-specific UGPase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号