首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural allyl sulfur compounds show antiproliferative effects on tumor cells, but the biochemical mechanisms underlying the antitumorigenic properties of the organ sulfur compounds are not yet fully understood. Sodium 2-propenyl-thiosulfate is a garlic water-soluble organo-sulfane sulfur compound able to promote apoptosis in cancer cells, affecting the 'managing' of the redox state in the cell. Our studies show that sodium 2-propenyl-thiosulfate reacts spontaneously with reduced glutathione at physiological pH, leading to the formation of S-allyl-mercapto-glutathione, radicals and peroxyl species, which are able to induce inhibition of enzymes with cysteine in the catalytic site, such as sulfurtransferases. S-Allyl-mercapto-glutathione was purified and characterized by NMR and MS, and its cytotoxic effect at 500 μm on HuT 78 cells was analyzed, showing activation of the p38-MAPK pathway. Many allyl sulfur compounds are also able to promote chemoprevention by induction of xenobiotic-metabolizing enzymes, inducing down-activation or detoxification of the carcinogens. Thus, the effects of the S-allyl-mercapto-glutathione on proteins involved in the cellular detoxification system, such as glutathione S-transferase, have been evaluated both in vitro and in HuT 78 cells. Although the antitumor properties of water-soluble sulfur compounds may arise from several mechanisms and it is likely that more cellular events occur simultaneously, a relevant role is played by the formation of both reduced glutathione conjugates and radical species that affect the activity of the thiol-proteins involved in fundamental cellular processes.  相似文献   

2.
Sodium 2-propenyl thiosulfate was identified in boiled garlic (Allium sativum). When canine erythrocytes were incubated with sodium 2-propenyl thiosulfate, the methemoglobin concentration and Heinz body percentage in erythrocytes were both increased, indicating that the compound induced oxidative damage in canine erythrocytes. It seems that this compound is one of the causative agents of garlic-induced hemolysis in dogs.  相似文献   

3.
Sodium 2-propenyl thiosulfate was identified in boiled garlic (Allium sativum). When canine erythrocytes were incubated with sodium 2-propenyl thiosulfate, the methemoglobin concentration and Heinz body percentage in erythrocytes were both increased, indicating that the compound induced oxidative damage in canine erythrocytes. It seems that this compound is one of the causative agents of garlic-induced hemolysis in dogs.  相似文献   

4.
Cyanide is a dreaded chemical because of its toxic properties. Although cyanide acts as a general metabolic inhibitor, it is synthesized, excreted and metabolized by hundreds of organisms, including bacteria, algae, fungi, plants, and insects, as a mean to avoid predation or competition. Several cyanide compounds are also produced by industrial activities, resulting in serious environmental pollution. Bioremediation has been exploited as a possible alternative to chemical detoxification of cyanide compounds, and various microbial systems allowing cyanide degradation have been described. Enzymatic pathways involving hydrolytic, oxidative, reductive, and substitution/transfer reactions are implicated in detoxification of cyanide by bacteria and fungi. Amongst enzymes involved in transfer reactions, rhodanese catalyzes sulfane sulfur transfer from thiosulfate to cyanide, leading to the formation of the less toxic thiocyanate. Mitochondrial rhodanese has been associated with protection of aerobic respiration from cyanide poisoning. Here, the biochemical and physiological properties of microbial sulfurtransferases are reviewed in the light of the importance of rhodanese in cyanide detoxification by the cyanogenic bacterium Pseudomonas aeruginosa. Critical issues limiting the application of a rhodanese-based cellular system to cyanide bioremediation are also discussed.  相似文献   

5.
Thiosulfate oxidation and mixotrophic growth with succinate or methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium oryzae CBMB20, which was recently characterized and reported as a novel species isolated from rice. Methylobacterium oryzae was able to utilize thiosulfate in the presence of sulfate. Thiosulfate oxidation increased the protein yield by 25% in mixotrophic medium containing 18.5 mmol.L-1 of sodium succinate and 20 mmol.L-1 of sodium thiosulfate on day 5. The respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfur and sulfite. Thiosulfate was predominantly oxidized to sulfate and intermediate products of thiosulfate oxidation, such as tetrathionate, trithionate, polythionate, and sulfur, were not detected in spent medium. It indicated that bacterium use the non-S4 intermediate sulfur oxidation pathway for thiosulfate oxidation. Thiosulfate oxidation enzymes, such as rhodanese and sulfite oxidase activities appeared to be constitutively expressed, but activity increased during growth on thiosulfate. No thiosulfate oxidase (tetrathionate synthase) activity was detected.  相似文献   

6.
The capability of Phascolosoma arcuatum to detoxify sulfide in anaerobic conditions was examined. Sulfane sulfur, which underwent cold cyanolysis, was the major excretory end product of sulfide detoxification during anoxia. Thiosulfate was not excreted into the external medium. Instead, it was absorbed by P. arcuatum and its absorption was stimulated by the presence of sodium sulfide (Na2S) in the incubation medium. The effective formation and excretion of sulfane sulfur by P.␣arcuatum required the presence of both Na2S and sodium thiosulfate (Na2S2O3). Results obtained indicate that rhodanese might be involved in sulfide detoxification in this sipunculid. Rhodanese could act as a catalyst in the transfer of sulfur atoms from thiosulfate to HS. The body wall and the introvert were the main sites of sulfide detoxification. However, it is unlikely that epibiotic bacteria associated with the outside surface of the worm were involved in the detoxification process. A time-course study on the contents of thiosulfate and sulfane sulfur in the body wall of P. arcuatum incubated anaerobically in the presence of Na2S + Na2S2O3 verified that thiosulfate absorbed was utilized to detoxify sulfide to sulfane sulfur. Accepted: 24 October 1996  相似文献   

7.
Summary Changes of the specific activity of 3-mercaptopyruvate sulfurtransferase (MPST), rhodanese and cystathionase in Ehrlich ascites tumor cells (EATC) and tumor-bearing mouse liver after intraperitoneal administration of thiazolidine derivatives, L-cysteine, D,L-methionine, thiocystine or thiosulfate were estimated. Thiazolidine derivatives used were: thiazolidine-4-carboxylic acid (CF), 2-methyl-thiazolidine-2,4-dicarboxylic acid (CP) and 2-methyl-thiazolidine-4-carboxylic acid (CA). In the liver, the activity of MPST was significantly increased by all the studied compounds, whereas the activity of rhodanese was by CF and thiocystine and that of cystathionase was by the administration of cysteine and CP. Un the other hand, cysteine lowered the rhodanese activity and the activity of cystathionase was decreased by the administration of methionine and thiocystine. Activities of MPST and rhodanese were even lower in EATC than those in the liver of tumor-bearing mouse and the activity of cystathionase in EATC was not be detected. The thiazolidine derivatives significantly increased the level of MPST activity in EATC, but decreased the rhodanese activity. Thiosulfate also increased the activity of MPST to a lesser degree, but cysteine, methionine and thiocystine gave little change in the activity. The rhodanese activity in EATC was slightly increased only by thiocystine. These findings suggest that the sulfur metabolism in the tumor-bearing mouse liver is different from that in the normal mouse liver, and that sulfur compounds are minimally metabolized to sulfane sulfur, a labile sulfur, in EATC.  相似文献   

8.
The aim of the present studies was to determine whether the mechanism of biological action of garlic-derived sulfur compounds in human hepatoma (HepG2) cells can be dependent on the presence of labile sulfane sulfur in their molecules. We investigated the effect of allyl sulfides from garlic: monosulfide, disulfide and trisulfide on cell proliferation and viability, caspase 3 activity and hydrogen peroxide (H(2)O(2)) production in HepG2 cells. In parallel, we also examined the influence of the previously mentioned compounds on the levels of thiols, glutathione, cysteine and cysteinyl-glycine, and on the level of sulfane sulfur and the activity of its metabolic enzymes: rhodanese, 3-mercaptopyruvate sulfurtransferase and cystathionase. Among the compounds under study, diallyl trisulfide (DATS), a sulfane sulfur-containing compound, showed the highest biological activity in HepG2 cells. This compound increased the H(2)O(2) formation, lowered the thiol level and produced the strongest inhibition of cell proliferation and the greatest induction of caspase 3 activity in HepG2 cells. DATS did not affect the activity of sulfurtransferases and lowered sulfane sulfur level in HepG2 cells. It appears that sulfane sulfur containing DATS can be bioreduced in cancer cells to hydroperthiol that leads to H(2)O(2) generation, thereby influencing transmission of signals regulating cell proliferation and apoptosis.  相似文献   

9.
Activation of bovine plasminogen by Streptococcus uberis   总被引:3,自引:0,他引:3  
Abstract Thiosulfate and tetrathionate oxidation activity of Thiobacillus ferrooxidans were found to be absent in iron-growth cell as well as in the cells grown anaerobically on elemental sulfur. While the thiosulfate oxidase activity was absent in the cell-free extract of the above cells, the activity of rhodanese was present irrespective of the culture condition of T. ferrooxidans . It is thus conceivable that rhodanese is not involved in thiosulfate metabolism. During growth in presence of ferrous sulfate plus elemental sulfur, the thiosulfate/tetrathionate oxidation activity was absent till the oxidation of ferrous iron was complete and the cells harvested only in the latter period acquired the thiosulfate/tetrathionate oxidation activity. Thus it becomes evident that the inhibition of thiosulfate and tetrathionate oxidation is solely due to presence of ferrous iron.  相似文献   

10.
THiocystine (bis-[2-amino-2-carboxyethyl]trisulfide) is a natural substrate for rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1). Analogs of thiocystine were prepared by eliminating the carboxyl or amino group or by lengthening the carbon chain. Of these only homothiocystine (bis-[2-amino-2-carboxypropyl]trisulfide) had appreciable activity as a substrate. At pH 8.6, the optimum for rhodanese, transfer of sulfane sulfur to cyanide in the presence of rhodanese was nonspecific. Only the sulfane sulfur of 35S-labeled thiocystine was transferred to rhodanese. Thus, thiocystine and thiosulfate both produce a rhodanese persulfide as a stable intermediate in sulfur transfer.  相似文献   

11.
The interaction of the sulfurtransferase rhodanese (EC 2.8.1.1) with succinate dehydrogenase (EC 1.3.99.1), yeast alcohol dehydrogenase (EC 1.1.1.1) and bovine serum albumin was studied. Succinate dehydrogenase incorporates the sulfane sulfur of [35S]rhodanese and, in the presence of unlabelled rhodanese, also incorporates that of [35S]thiosulfate. Rhodanese releases most of its transferable sulfur and is re-loaded in the presence of thiosulfate. Rhodanese undergoes similar modifications with yeast alcohol dehydrogenase but this latter does not bind 35S in amounts comparable to those incorporated in succinate dehydrogenase: nearly all the 35S released by [35S]rhodanese is with low-molecular-weight compounds. Bovine serum albumin also binds very little sulfur and [35S]rhodanese present in the reaction mixture does not discharge its radioactive sulfur nor does it take up sulfur from thiosulfate. Sulfur release from rhodanese appears to depend on the presence of - SH groups in the acceptor protein. Sulfur incorporated into succinate dehydrogenase was analytically determined as sulfide. A comparison of the optical spectra of succinate dehydrogenase preparations incubated with or without rhodanese indicates that there is an effect of the sulfurtransferase on the iron-sulfur absorption of the flavorprotein. The interaction of rhodanese with succinate dehydrogenase greatly decreases the catalytic activity of rhodanese with respect to thiocyanate formation. This is attributed to modifications in rhodanese associated with the reduction of sulfane sulfur to sulfide. Thiosulfate in part protects from this deactivation. The reconstitutive capacity of succinate dehydrogenase increased in parallel with sulfur incorporated in that enzyme following its interaction with rhodanese.  相似文献   

12.
Sequence alignments of human molybdopterin synthase sulfurase, MOCS3, showed that the N-terminal domain is homologous to Escherichia coli MoeB, whereas the C-terminal domain is homologous to rhodanese-like proteins. Previous studies showed that the activity of the separately purified rhodanese-like domain of MOCS3 displayed 1000-fold lower activity in comparison to bovine rhodanese with thiosulfate as sulfur source. When the six amino acid active site loop of MOCS3 rhodanese-like domain was exchanged with the loop found in bovine rhodanese, thiosulfate:cyanide sulfurtransferase activity was increased 165-fold. Site-directed mutagenesis of each individual residue of the active site loop of the MOCS3 rhodanese-like domain showed that the charge of the last amino acid determines thiosulfate sulfurtransferase activity. Replacing Asp417 by threonine resulted in 90-fold increased activity, whereas replacing it by arginine increased the activity 470-fold. Using a fully defined in vitro system containing precursor Z, MOCS2A, E. coli MoaE, E. coli MoeB, Mg-ATP, MOCS3 rhodanese-like domain, and thiosulfate, it was shown that sulfur transfer to MOCS2A was also affected by the alterations, but not as drastically. Our studies revealed that in humans and most eukaryotes thiosulfate is not the physiologic sulfur donor for MOCS3, whereas in bacterial homologs, which have an arginine at the last position of the active site loop, thiosulfate can be used as a sulfur source for molybdenum cofactor biosynthesis. The phylogenetic analysis of MoeB homologs showed that eukaryotic homologs are of bacterial origin. Furthermore, it could be shown that an MoeB homolog named MoeZ, where the dual CXXC zinc-binding motif of the MoeB domain is not present, arose independently several times during evolution.  相似文献   

13.
The solution NMR structure of the α-helical integral membrane protein YgaP from Escherichia coli in mixed 1,2-diheptanoyl-sn-glycerol-3-phosphocholine/1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1′-rac-glycerol) micelles is presented. In these micelles, YgaP forms a homodimer with the two transmembrane helices being the dimer interface, whereas the N-terminal cytoplasmic domain includes a rhodanese-fold in accordance to its sequence homology to the rhodanese family of sulfurtransferases. The enzymatic sulfur transfer activity of full-length YgaP as well as of the N-terminal rhodanese domain only was investigated performing a series of titrations with sodium thiosulfate and potassium cyanide monitored by NMR and EPR. The data indicate the thiosulfate concentration-dependent addition of several sulfur atoms to the catalytic Cys-63, which process can be reversed by the addition of potassium cyanide. The catalytic reaction induces thereby conformational changes within the rhodanese domain, as well as on the transmembrane α-helices of YgaP. These results provide insights into a potential mechanism of YgaP during the catalytic thiosulfate activity in vivo.  相似文献   

14.
Pagani S  Forlani F  Carpen A  Bordo D  Colnaghi R 《FEBS letters》2000,472(2-3):307-311
Azotobacter vinelandii RhdA uses thiosulfate as the only sulfur donor in vitro, and this apparent selectivity seems to be a unique property among the characterized sulfurtransferases. To investigate the basis of substrate recognition in RhdA, we replaced Thr-232 with either Ala or Lys. Thr-232 was the target of this study since the corresponding Lys-249 in bovine rhodanese has been identified as necessary for catalytic sulfur transfer, and replacement of Lys-249 with Ala fully inactivates bovine rhodanese. Both T232K and T232A mutants of RhdA showed significant increase in thiosulfate-cyanide sulfurtransferase activity, and no detectable activity in the presence of 3-mercaptopyruvate as the sulfur donor substrate. Fluorescence measurements showed that wild-type and mutant RhdAs were overexpressed in the persulfurated form, thus conferring to this enzyme the potential of a persulfide sulfur donor compound. RhdA contains a unique sequence stretch around the catalytic cysteine, and the data here presented suggest a possible divergent physiological function of A. vinelandii sulfurtransferase.  相似文献   

15.
Bovine liver rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) was prepared in dilute solutions and subjected to conditions that led to a time-dependent loss of enzyme activity. The rate of this activity loss was found to be dependent upon the sulfur substitution state of the enzyme, and the presence or absence of the substrates, thiosulfate and cyanide. In the absence of excess substrates, free enzyme (E), and the covalent intermediate form of the enzyme bearing a divalent sulfur atom in the active site (ES), are of approximately equal functional stability. In comparison, E, in the presence of excess cyanide, was markedly more labile, while ES, supported by 10-50 mM thiosulfate, showed no significant loss of activity under any of the conditions tested. All the enzyme solutions were shown to be losing assayable protein from solution. However, it was demonstrated that, for rhodanese in the E form, the amount of protein lost was insufficient to account for the activity lost, and a marked decline in specific activity was observed. Enzyme in the ES form, whether supported by additional thiosulfate or not, did not decline in the specific activity, though comparable protein loss did occur from these solutions. Intrinsic fluorescence measurements of rhodanese in the ES form, before and after removal of the persulfide sulfur through the addition of cyanide, indicated that loss of enzymic activity was not accompanied by loss of the bound sulfur atom. Therefore, the stabilizing effect observed with thiosulfate could not be explained simply by its ability to maintain enzyme in the sulfur-substituted state. Since the concentration of thiosulfate employed in these experiments was insufficient to maintain all the enzyme in ES.S2O3 form, thiosulfate was acting as a chemical reagent rather than a substrate in stabilizing enzyme activity.  相似文献   

16.
Natural organosulfur compounds (OSCs) have been shown to have chemopreventive effects and to suppress the proliferation of tumor cells in vitro through the induction of apoptosis. The biochemical mechanisms underlying the antitumorigenic and anti-proliferative effects of garlic-derived OSCs are not fully understood. Several modes of action of these compounds have been proposed, and it seems likely that the rate of clearance of allyl sulfur groups from cells is a determinant of the overall response. The aim of this review is to focus attention on the effects of natural allyl sulfur compounds on the cell detoxification system in normal and tumor cells. It has been already reported that several natural allyl sulfur compounds induce chemopreventive effects by affecting xenobiotic metabolizing enzymes and inducing their down-activation. Moreover, different effects of water- and oil-soluble allyl sulfur compounds on enzymes involved in the detoxification system of rat tissues have been observed. A direct interaction of the garlic allyl sulfur compounds with proteins involved in the detoxification system was studied in order to support the hypothesis that proteins possessing reactive thiol groups and that are involved in the detoxification system and in the cellular redox homeostasis, are likely the preferential targets of these compounds. The biochemical transformation of the OSCs in the cell and their adducts with thiol functional groups of these proteins, could be considered relevant events to uncover the anticancer properties of the allyl sulfur compounds. Although additional studies, using proteomic approaches and transgenic models, are needed to identify the molecular targets and modes of action of these natural compounds, the allyl sulfur compounds can represent potential ideal agents in anticancer therapy, either alone or in association with other antitumor drugs.  相似文献   

17.
Thiobacillus denitrificans strain RT could be grown anaerobically in batch culture on thiosulfate but not on other reduced sulfur compounds like sulfide, elemental sulfur, thiocyanate, polythionates or sulfite. During growth on thiosulfate the assimilated cell sulfur was derived totally from the outer or sulfane sulfur. Thiosulfate oxidation started with a rhodanese type cleavage between sulfane and sulfone sulfur leading to elemental sulfur and sulfite. As long as thiosulfate was present elemental sulfur was transiently accumulated within the cells in a form that could be shown to be more reactive than elemental sulfur present in a hydrophilic sulfur sol, however, less reactive than sulfane sulfur of polythionates or organic and inorganic polysulfides. When thiosulfate had been completely consumed, intracellular elemental sulfur was rapidly oxidized to sulfate with a specific rate of 45 natom S°/min·mg protein. Extracellularly offered elemental sulfur was not oxidized under anaerobic conditions.  相似文献   

18.
Rhodanese domains are abundant structural modules that catalyze the transfer of a sulfur atom from thiolsulfates to cyanide via formation of a covalent persulfide intermediate that is bound to an essential conserved cysteine residue. In this study, the three-dimensional structure of the rhodanese domain of YgaP from Escherichia coli was determined using solution NMR. A typical rhodanese domain fold was observed, as expected from the high homology with the catalytic domain of other sulfur transferases. The initial sulfur-transfer step and formation of the rhodanese persulfide intermediate were monitored by addition of sodium thiosulfate using two-dimensional 1H–15N correlation spectroscopy. Discrete sharp signals were observed upon substrate addition, indicting fast exchange between sulfur-free and persulfide-intermediate forms. Residues exhibiting pronounced chemical shift changes were mapped to the structure, and included both substrate binding and surrounding residues.  相似文献   

19.
Sulfurtransferases/rhodaneses (Str) comprise a group of enzymes widely distributed in all phyla which catalyze in vitro the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. The best characterized Str is bovine rhodanese (EC 2.8.1.1) which catalyses in vitro the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms contain many proteins carrying a typical rhodanese pattern or domain forming multi-protein families (MPF). Despite the presence of Str activities in many living organisms, the physiological role of the members of this MPF has not been established unambiguously. While in mammals these proteins are involved in the elimination of toxic cyanogenic compounds, their ubiquity suggests additional physiological functions. In plants, Str are localized in the cytoplasm, mitochondria, plastids, and nucleus. Str probably also transfer reduced sulfur onto substrates as large as peptides or proteins. Several studies in different organisms demonstrate a protein–protein interaction with members of the thioredoxin MPF indicating a role of Str in maintenance of the cellular redox homeostasis. The increased expression of several members of the Str MPF in various stress conditions could be a response to oxidative stress. In summary, data indicate that Str are involved in various essential metabolic reactions.  相似文献   

20.
Rhodanese (thiosulfate: cyanide sulfurtransferase, EC. 2.8.1.1) is a ubiquitous enzyme present in all living organisms, from bacteria to humans and plays a central role in cyanide detoxification. The purpose of this investigation is to determine and compare rhodanese activity in different tissues of adult male and female goats (Capra hircus). The results showed that the specific activity of rhodanese in different tissues was significantly different (P<0.05). The highest activity of rhodanese was in epithelium of rumen, followed by epithelia of reticulum and omasum and liver. No significant difference was observed when tissues of male and female goats were compared. The lowest specific activity of rhodanese was observed in spleen, urinary bladder, lymph node, ovary, skeletal muscle and pyloric muscle of abomasum. The results of this study may indicate the involvement of rhodanese in cyanide detoxification in goat tissues that have greater potential to be exposed to higher levels of cyanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号