首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetylcholinesterase (AChE) expression is pivotal during apoptosis. Indeed, AChE inhibitors partially protect cells from apoptosis. Insulin-dependent diabetes mellitus (IDDM) is characterized in part by pancreatic β-cell apoptosis. Here, we investigated the role of AChE in the development of IDDM and analyzed protective effects of AChE inhibitors. Multiple low-dose streptozotocin (MLD-STZ) administration resulted in IDDM in a mouse model. Western blot analysis, cytochemical staining, and immunofluorescence staining were used to detect AChE expression in MIN6 cells, primary β cells, and apoptotic pancreatic β cells of MLD-STZ-treated mice. AChE inhibitors were administered intraperitoneally to the MLD-STZ mice for 30 days. Blood glucose, plasma insulin, and creatine levels were measured, and glucose tolerance tests were performed. The effects of AChE inhibitors on MIN6 cells were also evaluated. AChE expression was induced in the apoptotic MIN6 cells and primary β cells in vitro and pancreatic islets in vivo when treated with STZ. Induction and progressive accumulation of AChE in the pancreatic islets were associated with apoptotic β cells during IDDM development. The administration of AChE inhibitors effectively decreased hyperglycemia and incidence of diabetes, and restored plasma insulin levels and plasma creatine clearance in the MLD-STZ mice. AChE inhibitors partially protected MIN6 cells from the damage caused by STZ treatment. Induction and accumulation of AChE in pancreatic islets and the protective effects of AChE inhibitors on the onset and development of IDDM indicate a close relationship between AChE and IDDM.  相似文献   

2.
Previously we isolated a -calpain/PKC complex from skeletal muscle which suggested tight interactions between the Ca2+-dependent protease and the kinase in this tissue. Our previous studies also underlined the involvement of ubiquitous calpains in muscular fusion and differentiation. In order to precise the relationships between PKC and ubiquitous calpains in muscle cells, the expression of these two enzymes was first examined during myogenesis of embryonic myoblasts in culture.Our results show that calpains and PKC are both present in myotubes and essentially localized in the cytosolic compartment. Moreover, calpains were mainly present after 40 h of cell differentiation concomitantly with a depletion of PKC content in the particulate fraction and the appearance of PKM fragment. These results suggest a possible calpain dependent down-regulation process of PKCa in our model at the time of intense fusion.In our experimental conditions phorbol myristate acetate (PMA) induced a rapid depletion of pkc in the cytosolic fraction and its translocation toward the particulate fraction. Long term exposure of myotubes in the presence of PMA induced down-regulation of PKC, this process being partially blocked by calpain inhibitors (CS peptide and inhibitor II) and antisense oligonucleotides for the two major ubiquitous calpain isoforms (m- and -calpains).Taken together, our findings argue for an involvement of calpains in the differentiation of embryonic myoblasts by limited proteolytic cleavage of PKC.  相似文献   

3.
Protein kinase Cζ (PKCζ) is a member of the PKC family, serving downstream of insulin receptor and phosphatidylinositol (PI) 3-kinase. Many evidences suggest that PKCζ plays a very important role in activating glucose transport response. Not only insulin but also glucose and exercise can activate PKCζ through diverse pathways. PKCζ activation and activity are impaired with insulin resistance in muscle and adipose tissues of type II diabetes individuals, but heightened in liver tissue, wherein it also increases lipid synthesis mediated by SREBP-1c (sterol-regulatory element-binding protein). Many studies have focused on linkage between PKCζ and GLUT4 translocation and activation. Exploring the molecular mechanisms and pathways by which PKCζ mediates glucose transport will highlight the insulin-signaling pathway. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 7, pp. 869–875. Co-first authors.  相似文献   

4.
Enzastaurin is a selective inhibitor of protein kinase C β and a potent inhibitor of tumor angiogenesis. In addition, enzastaurin shows direct cytotoxic activity toward a subset of tumor cells including colorectal cancer cells (CRC). In spite of promising results in animal models, the clinical activity of enzastaurin in CRC patients has been disappointing although a subset of patients seems to derive benefit. In the present study we investigated the biological and cytotoxic activities of enzastaurin toward a panel of well-characterized CRC cell lines in order to clarify the mechanistic basis for the cytotoxic activity. Our results show that enzastaurin is significantly more cytotoxic toward CRC cells with chromosome instability (CIN) compared to cells with microsatellite instability (MSI). Since CIN is usually attributed to mitotic dysfunction, the influence of enzastaurin on cell cycle progression and mitotic transit was characterized for representative CIN and MSI cell lines. Enzastaurin exposure was accompanied by prolonged metaphase arrest in CIN cells followed by the appearance of tetraploid and micronuclei-containing cells as well as by increased apoptosis, whereas no detectable mitotic dysfunctions were observed in MSI cells exposed to isotoxic doses of enzastaurin. Our study identifies enzastaurin as a new, context dependent member of a heterogeneous group of anticancer compounds that induce “mitotic catastrophe," that is mitotic dysfunction accompanied by cell death. These data provide novel insight into the mechanism of action of enzastaurin and may allow the identification of biomarkers useful to identify CRC patients particularly likely, or not, to benefit from treatment with enzastaurin.  相似文献   

5.
Protein kinase C (PKC) is a family of kinases that regulate numerous cellular functions. They are classified into three subfamilies, i.e., conventional PKCs, novel PKCs, and atypical PKCs, that have different domain structures. Generally, PKCs exist as a soluble protein in the cytosol in resting cells and they are recruited to target membranes upon stimulation. In the present study, we found that PKCη tagged with EGFP distributed in lipid droplets (LD) and induced a significant reduction in LD size. Two other novel PKCs, PKCδ and PKCε, also showed some concentration around LDs, but it was less distinct and less frequent than that of PKCη. Conventional and atypical PKCs (α, βII, γ, and ζ) did not show any preferential distribution around LDs. 1,2-Diacylglycerol, which can activate novel PKCs without an increase of Ca2+ concentration, is the immediate precursor of triacylglycerol and exists in LDs. The present results suggest that PKCη modifies lipid metabolism by phosphorylating unidentified targets in LDs.  相似文献   

6.
7.
Vaccinia-related kinase 1 (VRK1) is a novel serine/threonine kinase that plays an important role in cell proliferation. However, little is known about the upstream regulators of VRK1 activity. Here we provide evidence for a role of protein kinase Cδ (PKCδ) in the regulation of murine VRK1. We show that PKCδ interacts with VRK1, phosphorylates the Ser-355 residue in the putative regulatory region, and negatively regulates its kinase activity in vitro. Intriguingly, PKCδ-induced cell death was facilitated by phosphorylation of VRK1 when cells were exposed to a DNA-damaging agent. In addition, p53 played a critical role in the regulation of DNA damage-induced cell death accompanied by PKCδ-mediated modulation of VRK1. In p53-deficient cells, PKCδ-mediated phosphorylation of VRK1 had no effect on cell viability. However, cells overexpressing p53 exhibited significant reduction of cell viability when cotransfected with both VRK1 and PKCδ. Taken together, these results indicate that PKCδ regulates phosphorylation and down-regulation of VRK1, thereby contributing to cell cycle arrest and apoptotic cell death in a p53-dependent manner.  相似文献   

8.
Plasmacytoid dendritic cells (pDC) are the major producers of type I interferons (IFNs) in humans and rapidly produce IFN-α in response to virus exposure. Although HIV infection is associated with pDC activation, it is unclear why the innate immune response is unable to effectively control viral replication. We systematically compared the effect of HIV, Influenza, Sendai, and HSV-2 at similar target cell multiplicity of infection (M.O.I.) on human pDC function. We found that Influenza, Sendai, HSV-2 and imiquimod are able to rapidly induce IFN-α production within 4 hours to maximal levels, whereas HIV had a delayed induction that was maximal only after 24 hours. In addition, maximal IFN-α induction by HIV was at least 10 fold less than that of the other viruses in the panel. HIV also induced less TNF-α and MIP-1β but similar levels of IP-10 compared to other viruses, which was also mirrored by delayed upregulation of pDC activation markers CD83 and CD86. BDCA-2 has been identified as an inhibitory receptor on pDC, signaling through a pathway that involves SYK phosphorylation. We find that compared to Influenza, HIV induces the activation of the SYK pathway. Thus, HIV delays pDC IFN-α production and pDC activation via SYK phosphorylation, allowing establishment of viral populations.  相似文献   

9.
Chen YC  Chen Y  Huang SH  Wang SM 《FEBS letters》2010,584(21):4442-4448
Adenosine (Ado), an endogenous nucleoside, can stimulate corticosterone synthesis in adrenal cells via the A2A/A2B adenosine receptors (ARs). This study evaluated the contribution of protein kinase C (PKC) isoforms in Ado-induced steroidogenesis. The PKC inhibitor calphostin c blocked Ado-induced steroidogenesis, the mitogen-activated protein kinase (MEK)-extracellular signal-related regulated kinase (ERK)-cyclic AMP responsive element-binding protein cascade, and the mRNA expression of steroidogenic acute regulatory protein and CYP11B1. Further analyses revealed that PKCμ was indeed activated by Ado. Moreover, downregulation of PKCμ by small interfering RNA (siRNA) inhibited Ado-stimulated steroidogenesis and ERK phosphorylation. Finally, inhibition of either A2AAR or A2BAR led to the suppression of PKCμ phosphorylation. Together, these findings suggest that A2AR-PKCμ-MEK signaling mediates Ado-stimulated adrenal steroidogenesis.  相似文献   

10.
Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression, and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι-Par6 complex in transformed growth and invasion, and of several PKCι-dependent survival pathways in chemo-resistance. Future studies will be required to determine the composition and dynamics of the PKCι-Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM.  相似文献   

11.
《Current biology : CB》2000,10(15):923-S2
Apoptotic execution is characterized by dramatic changes in nuclear structure accompanied by cleavage of nuclear proteins by caspases (reviewed in [1]). Cell-free extracts have proved useful for the identification and functional characterization of activities involved in apoptotic execution 2, 3, 4 and for the identification of proteins cleaved by caspases [5]. More recent studies have suggested that nuclear disassembly is driven largely by factors activated downstream of caspases [6]. One such factor, the caspase-activated DNase, CAD/CPAN/DFF40 4, 7, 8 (CAD) can induce apoptotic chromatin condensation in isolated HeLa cell nuclei in the absence of other cytosolic factors 6, 8. As chromatin condensation occurs even when CAD activity is inhibited, however, CAD cannot be the sole morphogenetic factor triggered by caspases [6]. Here we show that DNA topoisomerase IIα (Topo IIα), which is essential for both condensation and segregation of daughter chromosomes in mitosis [9], also functions during apoptotic execution. Simultaneous inhibition of Topo IIα and caspases completely abolishes apoptotic chromatin condensation. In addition, we show that CAD binds to Topo IIα, and that their association enhances the decatenation activity of Topo IIα in vitro.  相似文献   

12.
Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine that promotes atherosclerosis and is a mediator of the response to arterial injury. We previously demonstrated that platelet-derived growth factor (PDGF) and angiotensin II (Ang) induce the accumulation of MCP-1 mRNA in vascular smooth muscle cells mainly by increasing mRNA stability. In the present study, we have examined the signaling pathways involved in this stabilization of MCP-1 mRNA. The effect of PDGF (BB isoform) and Ang on MCP-1 mRNA stability was mediated by the PDGF β and angiotensin II receptor AT1R, respectively, and did not involve transactivation between the two receptors. The effect of PDGF-BB was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of phosphoinositol 3-kinase (PI3K), Src, or NADPH oxidase (NADPHox). In contrast, the effect of Ang was blocked by inhibitors of Src, and PKC, but not by inhibitors of PI3 K, or NADPHox. The effect of PDGF BB on MCP-1 mRNA stability was blocked by siRNA directed against PKCδ and protein kinase D (PKD), whereas the effect of Ang was blocked only by siRNA directed against PKCδ. These results suggest that the enhancement of MCP-1 mRNA stability by PDGF-BB and Ang are mediated by distinct “proximal” signaling pathways that converge on activation of PKCδ. This study identifies a novel role for PKCδ in mediating mRNA stability in smooth muscle cells.  相似文献   

13.
PGC-1α has been implicated as an important mediator of functional capacity of skeletal muscle. However, the role of PGC-1α in myoblast differentiation remains unexplored. In the present study, we observed a significant up-regulation of PGC-1α expression during the differentiation of murine C2C12 myoblast. To understand the biological significance of PGC-1α up-regulation in myoblast differentiation, C2C12 cells were transfected with murine PGC-1α cDNA and siRNA targeting PGC-1α, respectively. PGC-1α over-expressing clones fused to form typical myotubes with higher mRNA level of myosin heavy chain isoform I (MyHCI) and lower MyHCIIX. No obvious differentiation was observed in PGC-1α-targeted siRNA-transfected cells with marked decrement of mRNA levels of MyHCI and MyHCIIX. Furthermore, PGC-1α increased the expression of MyoD and MyoG in C2C12 cells, which controlled the commitment of precursor cells to myotubes. These results indicate that PGC-1α is associated with myoblast differentiation and elevates MyoD and MyoG expression levels in C2C12 cells.  相似文献   

14.
Because human prostate-distributed UDP-glucuronosyltransferase (UGT) 2B15 metabolizes 5α-dihydrotestosterone (DHT) and 3α-androstane-5α,17β-diol metabolite, we sought to determine whether 2B15 requires regulated phosphorylation similar to UGTs already analyzed. Reversible down-regulation of 2B15-transfected COS-1 cells following curcumin treatment and irreversible inhibition by calphostin C, bisindolylmaleimide, or röttlerin treatment versus activation by phorbol 12-myristate 13-acetate indicated that 2B15 undergoes PKC phosphorylation. Mutation of three predicted PKC and two tyrosine kinase sites in 2B15 caused 70–100 and 80–90% inactivation, respectively. Anti-UGT-1168 antibody trapped 2B15-His-containing co-immunoprecipitates of PKCα in 130–140- and >150-kDa complexes by gradient SDS-PAGE analysis. Complexes bound to WT 2B15-His remained intact during electrophoresis, whereas 2B15-His mutants at phosphorylation sites differentially dissociated. PKCα siRNA treatment inactivated >50% of COS-1 cell-expressed 2B15. In contrast, treatment of 2B15-transfected COS-1 cells with the Src-specific activator 1,25-dihydroxyvitamin D3 enhanced activity; treatment with the Src-specific PP2 inhibitor or Src siRNA inhibited >50% of the activity. Solubilized 2B15-His-transfected Src-free fibroblasts subjected to in vitro [γ-33P]ATP-dependent phosphorylation by PKCα and/or Src, affinity purification, and SDS gel analysis revealed 2-fold more radiolabeling of 55–58-kDa 2B15-His by PKCα than by Src; labeling was additive for combined kinases. Collectively, the evidence indicates that 2B15 requires regulated phosphorylation by both PKCα and Src, which is consistent with the complexity of synthesis and metabolism of its major substrate, DHT. Whether basal cells import or synthesize testosterone for transport to luminal cells for reduction to DHT by 5α-steroid reductase 2, comparatively low-activity luminal cell 2B15 undergoes a complex pattern of regulated phosphorylation necessary to maintain homeostatic DHT levels to support occupation of the androgen receptor for prostate-specific functions.  相似文献   

15.
In mouse testis, claudin-11 is responsible for the formation of specific parallel TJ strands of the blood–testis barrier (BTB). Concerning the human BTB, there is no information about the transmembrane TJ proteins. We recently demonstrated the loss of functional integrity of the BTB in testicular intraepithelial neoplasia (TIN), associated with a dislocation of the peripheral TJ proteins ZO-1 and ZO-2. Here, we determined the expression and distribution of claudin-11 at the human BTB in seminiferous tubules with normal spermatogenesis (NSP) and TIN. Immunostaining of claudin-11 revealed intense signals at the basal BTB region in seminiferous epithelium with NSP. Within TIN tubules, claudin-11 immunostaining became diffuse and cytoplasmic. Double immunogold labeling demonstrated a co-localization of claudin-11 and ZO-1 at the inter-Sertoli cell junctions. Real-time RT-PCR of laser microdissected tubules showed an up-regulation of claudin-11 mRNA in TIN. Additionally, increased claudin-11 protein was observed by Western blot. We conclude that claudin-11 constitutes a TJ protein at the human BTB. In TIN tubules, claudin-11 is up-regulated and dislocated from the BTB. Therefore, the disruption of the BTB is related to a dysfunction of claudin-11 and not to a failure of its expression.  相似文献   

16.
At variance with protein kinases expressed by oncogenes, CK2 is endowed with constitutive activity under normal conditions, and no CK2 gain-of-function mutants are known. Its amount, however, is abnormally high in malignant cells where it appears to be implicated in many of the cell biology phenomena associated with cancer. These observations can be reconciled assuming that tumor cells develop an overdue reliance ("non-oncogene addiction") on abnormally high CK2 level. While the potential of this latter to generate an environment favorable to neoplasia is consistent with the global antiapoptotic and prosurvival role played by CK2, it is not clear what is determining accumulation of CK2 in cells "predisposed" to become malignant. Exploiting the apoptosis sensitive (S) or resistant (R) CEM cell model, characterized by sharply different CK2 levels, we have now correlated the level and degradation rate of CK2 to those of the chaperone proteins Hsp90 and Cdc37. We show in particular that persistence of high CK2 level in R-CEM, as opposed to S-CEM, is accompanied by the presence of an immunospecific form of Cdc37 not detectable in S-CEM and refractory to staurosporine-induced degradation.  相似文献   

17.
We have previously shown that protein kinase Cε (PKCε) acts as an antiapoptotic protein and protects breast cancer MCF-7 cells from tumor necrosis factor-α (TNF)-mediated apoptosis. In the present study, we have investigated the mechanism by which PKCε inhibits TNF-induced cell death. Overexpression of wild-type PKCε (WT-PKCε) in MCF-7 cells decreased TNF-induced mitochondrial depolarization. Depletion of Bax by small interfering RNA (siRNA) attenuated TNF-induced cell death. Overexpression of PKCε in MCF-7 cells decreased dimerization of Bax and its translocation to the mitochondria. Knockdown of PKCε using siRNA induced Bax dimerization and mitochondrial translocation. PKCε was coimmunoprecipitated with Bax in MCF-7 cells. These results suggest that PKCε mediates its antiapoptotic effect partly by preventing activation and translocation of Bax to the mitochondria.  相似文献   

18.
Collagen type I is the most abundant component of extracellular matrix in the arterial wall. Mice knocked out for the protein kinase C δ gene (PKCδ KO) show a marked reduction of collagen I in the arterial wall. The lack of PKCδ diminished the ability of arterial smooth muscle cells (SMCs) to secrete collagen I without significantly altering the intracellular collagen content. Moreover, the unsecreted collagen I molecules accumulate in large perinuclear puncta. These perinuclear structures colocalize with the trans-Golgi network (TGN) marker TGN38 and to a lesser degree with cis-Golgi marker (GM130) but not with early endosomal marker (EEA1). Associated with diminished collagen I secretion, PKCδ KO SMCs exhibit a significant reduction in levels of cell division cycle 42 (Cdc42) protein and mRNA. Restoring PKCδ expression partially rescues Cdc42 expression and collagen I secretion in PKCδ KO SMCs. Inhibition of Cdc42 expression or activity with small interfering RNA or secramine A in PKCδ WT SMCs eliminates collagen I secretion. Conversely, restoring Cdc42 expression in PKCδ KO SMCs enables collagen I secretion. Taken together, our data demonstrate that PKCδ mediates collagen I secretion from SMCs, likely through a Cdc42-dependent mechanism.  相似文献   

19.
Fang J  Engen JR  Beuning PJ 《Biochemistry》2011,50(26):5958-5968
Escherichia coli DNA polymerase III is a highly processive replicase because of the presence of the β clamp protein that tethers DNA polymerases to DNA. The β clamp is a head-to-tail ring-shaped homodimer, in which each protomer contains three structurally similar domains. Although multiple studies have probed the functions of the β clamp, a detailed understanding of the conformational dynamics of the β clamp in solution is lacking. Here we used hydrogen exchange mass spectrometry to characterize the conformation and dynamics of the intact dimer β clamp and a variant form (I272A/L273A) with a weakened ability to dimerize in solution. Our data indicate that the β clamp is not a static closed ring but rather is dynamic in solution. The three domains exhibited different dynamics, though they share a highly similar tertiary structure. Domain I, which controls the opening of the clamp by dissociating from domain III, contained several highly flexible peptides that underwent partial cooperative unfolding (EX1 kinetics) with a half-life of ~4 h. The comparison between the β monomer variant and the wild-type β clamp showed that the β monomer was more dynamic. In the monomer, partial unfolding was much faster and additional regions of domain III also underwent partial unfolding with a half-life of ~1 h. Our results suggest that the δ subunit of the clamp loader may function as a "ring holder" to stabilize the transient opening of the β clamp, rather than as a "ring opener".  相似文献   

20.
Exercise-induced phosphorylation of FXYD1 is a potential important regulator of Na(+)-K(+)-pump activity. It was investigated whether skeletal muscle contractions induce phosphorylation of FXYD1 and whether protein kinase Cα (PKCα) activity is a prerequisite for this possible mechanism. In part 1, human muscle biopsies were obtained at rest, after 30 s of high-intensity exercise (166 ± 31% of Vo(2max)) and after a subsequent 20 min of moderate-intensity exercise (79 ± 8% of Vo(2max)). In general, FXYD1 phosphorylation was increased compared with rest both after 30 s (P < 0.05) and 20 min (P < 0.001), and more so after 20 min compared with 30 s (P < 0.05). Specifically, FXYD1 ser63, ser68, and combined ser68 and thr69 phosphorylation were 26-45% higher (P < 0.05) after 20 min of exercise than at rest. In part 2, FXYD1 phosphorylation was investigated in electrically stimulated soleus and EDL muscles from PKCα knockout (KO) and wild-type (WT) mice. Contractile activity caused FXYD1 ser68 phosphorylation to be increased (P < 0.001) in WT soleus muscles but to be reduced (P < 0.001) in WT extensor digitorum longus. In contrast, contractile activity did not affect FXYD1 ser68 phosphorylation in the KO mice. In conclusion, exercise induces FXYD1 phosphorylation at multiple sites in human skeletal muscle. In mouse muscles, contraction-induced changes in FXYD1 ser68 phosphorylation are fiber-type specific and dependent on PKCα activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号