首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cys-59 and Cys-62, forming a disulfide bond in the four-residue loop of Shewanella violacea cytochrome c 5 (SV cytc 5), contribute to protein stability but not to redox function. These Cys residues were substituted with Ala in SV cytc 5, and the structural and functional properties of the resulting C59A/C62A variant were determined and compared with those of the wild-type. The variant had similar features to those of the wild-type in absorption, circular dichroic, and paramagnetic 1H NMR spectra. In addition, the redox potentials of the wild-type and variant were essentially the same, indicating that removal of the disulfide bond from SV cytc 5 does not affect the redox function generated in the vicinity of heme. However, calorimetric analysis of the wild-type and variant showed that the mutations caused a drastic decrease in the protein stability through enthalpy, but not entropy. Four residues are encompassed by the SV cytc 5 disulfide bond, which is the shortest one that has been proved to affect protein stability. The protein stability of SV cytc 5 can be controlled without changing the redox function, providing a new strategy for regulating the stability and function of cytochrome c.  相似文献   

2.
Thioredoxins are small soluble proteins that contain a redox-active disulfide (CXXC). These disulfides are tuned to oxidizing or reducing potentials depending on the function of the thioredoxin within the cell. The mechanism by which the potential is tuned has been controversial, with two main hypotheses: first, that redox potential (Em) is specifically governed by a molecular ‘rheostat’—the XX amino acids, which influence the Cys pKa values, and thereby, Em; and second, the overall thermodynamics of protein folding stability regulates the potential. Here, we use protein film voltammetry (PFV) to measure the pH dependence of the redox potentials of a series of wild-type and mutant archaeal Trxs, PFV and glutathionine-equilibrium to corroborate the measured potentials, the fluorescence probe BADAN to measure pKa values, guanidinium-based denaturation to measure protein unfolding, and X-ray crystallography to provide a structural basis for our functional analyses. We find that when these archaeal thioredoxins are probed directly using PFV, both the high and low potential thioredoxins display consistent 2H+:2e- coupling over a physiological pH range, in conflict with the conventional ‘rheostat’ model. Instead, folding measurements reveals an excellent correlation to reduction potentials, supporting the second hypothesis and revealing the molecular mechanism of reduction potential control in the ubiquitous Trx family.  相似文献   

3.
Li Q  Hu HY  Wang WQ  Xu GJ 《Biological chemistry》2001,382(12):1679-1686
The thiol/disulfide oxidoreductases play important roles in ensuring the correct formation of disulfide bonds, of which the DsbE protein, also called CcmG, is the one implicated in electron transfer for cytochrome c maturation in the periplasm of Escherichia coli. The soluble, N-terminally truncated DsbE was overexpressed and purified to homogeneity. Here we report the structural and redox properties of the leaderless form (DsbEL-). During the redox reaction, the protein undergoes a structural transformation resulting in a more stable reduced form, but this form shows very low reactivity in thiol/ disulfide exchange of cysteine residues and low activity in accelerating the reduction of insulin. The standard redox potential (E'0) for the active thiol/ disulfide was determined to be -0.186 V; only one of the two cysteines (Cys80) was suggested to be the active residue in the redox reaction. From the aspect of biochemical properties, DsbE can be regarded as a weak reductant in the Escherichia coli periplasm. This implies that the function of DsbE in cytochrome c maturation can be ascribed to its active-site cysteines and the structure of the reduced form.  相似文献   

4.
Bis (cysteinyl) octapeptides related to the active sites of the oxidoreductases protein disulfide isomerase (PDI), thioredoxin reductase (trr), glutaredoxin (grx), and thioredoxin (trx) were analyzed for their propensity to form the intramolecular 14-membered disulfide ring in oxidation experiments. The rank order of percentage of cyclic monomer formed in aqueous buffer (pH 7.0) at 10?3 M concentration was found to be very similar, but opposite to that of the Kox and, correspondingly, of the redox potentials of the native enzymes. Attempts to induce intrinsic conformational preferences of the peptides by addition of trifluoroethanol led to enhancements of β-turn structures as reflected by the CD and Fourier transform ir spectra. The induced secondary structure, instead of aligning the tendencies of the excised fragments for loop formation with those of the intact proteins, was found to suppress the differences by significantly increasing the preference for cyclic monomers (≈ 90%). Similarly, operating under denaturing conditions, i.e., in 6M guanidinium hydrochloride, only for the trx peptide was the statistical product distribution obtained. For the remaining peptides, again a strong increase of cyclic monomer contents was observed that could not be correlated with dissolution of β-sheet type aggregates. The CD spectra are more consistent with the presence of ordered structure to some extent, possibly resulting from an hydrophobic collapse of the sparingly soluble peptides. The results of the oxidation experiments further support previous findings from thiol disulfide interchange equilibria, which clearly revealed a decisive role of the characteristic thioredoxin structural motif in dictating the redox properties of the enzymes. Point mutations in the active sites of the oxidoreductases allowed us to affect their redox potentials strongly, but apparently only in the constraint form of the three-dimensional structure as similar exchanges in the excised fragments did not produce the expected effect. This observation contrasts with numerous reports that the conformation of short disulfide loops is mainly dictated by the amino acid sequence. © 1994 John Wiley & Sons, Inc. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect, the RmAFP1 has only one disulfide bridge. The melting temperature, Tm, of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show that the protein almost completely refolds into the native state after repeated exposure of 70°C. RmAFP1 thus appears to be kinetically stable even far above its melting temperature. Thermodynamically, the insect AFPs seem to be dividable in three groups, relating to their content of disulfide bridges and widths of the ice binding motifs; high melting temperature AFPs (high disulfide content, TxT motifs), low melting temperature but high refolding capability AFPs (one disulfide bridge, TxTxTxT motifs) and irreversibly unfolded AFPs at low temperatures (no disulfide bridges, TxTxTxTxT motifs). The property of being able to cope with high temperature exposures may appear peculiar for proteins which strictly have their effect at subzero temperatures. Different aspects of this are discussed.  相似文献   

6.
The unicellular cyanobacterium Synechocystis sp PCC 6803 is capable of synthesizing two different Photosystem-I electron acceptors, ferredoxin and flavodoxin. Under normal growth conditions a [2Fe-2S] ferredoxin was recovered and purified to homogeneity. The complete amino-acid sequence of this protein was established. The isoelectric point (pI = 3.48), midpoint redox potential (Em = -0.412 V) and stability under denaturing conditions were also determined. This ferredoxin exhibits an unusual electrophoretic behavior, resulting in a very low apparent molecular mass between 2 and 3.5 kDa, even in the presence of high concentrations of urea. However, a molecular mass of 10,232 Da (apo-ferredoxin) is calculated from the sequence. Free thiol assays indicate the presence of a disulfide bridge in this protein. A small amount of ferredoxin was also found in another fraction during the purification procedure. The amino-acid sequence and properties of this minor ferredoxin were similar to those of the major ferredoxin. However, its solubility in ammonium sulfate and its reactivity with antibodies directed against spinach ferredoxin were different. Traces of flavodoxin were also recovered from the same fraction. The amount of flavodoxin was dramatically increased under iron-deficient growth conditions. An acidic isoelectric point was measured (pI = 3.76), close to that of ferredoxin. The midpoint redox potentials of flavodoxin are Em1 = -0.433 V and Em2 = -0.238 V at pH 7.8. Sequence comparison based on the 42 N-terminal amino acids indicates that Synechocystis 6803 flavodoxin most likely belongs to the long-chain class, despite an apparent molecular mass of 15 kDa determined by SDS-PAGE.  相似文献   

7.
Thioredoxin (Trx) domain is a typical fold functioning in thiol/disulfide exchange. DsbE protein is one of the Trx-domain containing proteins involved in electron transfer for cytochrome c maturation in the periplasm of Escherichia coli. The soluble C-terminal Trx domain of DsbE protein was overexpressed and purified to homogeneity. We herein report biochemical characterization of the structural and redox properties of this domain. During redox reaction, the domain undergoes a structural transformation resulting in a more stable reduced form with a free energy difference (DeltaDeltaG(Redox)) of ca. 5 kcal/mol, but the thiol/disulfide exchange exhibits very low reactivity. The standard redox potential (E0') for the active thiol/disulfide is -0.175 V and the pK(a) value of the active cysteine is around 6.8, indicating that the domain acts as a weak reductant. This implies that the membrane-anchored DsbE protein may provide driven reducing power for the redox reaction in the thiol/disulfide exchange pathway.  相似文献   

8.
Azotobacter vinelandii flavodoxin II serves as a physiological reductant of nitrogenase, the enzyme system mediating biological nitrogen fixation. Wildtype A. vinelandii flavodoxin II was electrochemically and crystallographically characterized to better understand the molecular basis for this functional role. The redox properties were monitored on surfactant‐modified basal plane graphite electrodes, with two distinct redox couples measured by cyclic voltammetry corresponding to reduction potentials of ?483 ± 1 mV and ?187 ± 9 mV (vs. NHE) in 50 mM potassium phosphate, 150 mM NaCl, pH 7.5. These redox potentials were assigned as the semiquinone/hydroquinone couple and the quinone/semiquinone couple, respectively. This study constitutes one of the first applications of surfactant‐modified basal plane graphite electrodes to characterize the redox properties of a flavodoxin, thus providing a novel electrochemical method to study this class of protein. The X‐ray crystal structure of the flavodoxin purified from A. vinelandii was solved at 1.17 Å resolution. With this structure, the native nitrogenase electron transfer proteins have all been structurally characterized. Docking studies indicate that a common binding site surrounding the Fe‐protein [4Fe:4S] cluster mediates complex formation with the redox partners Mo‐Fe protein, ferredoxin I, and flavodoxin II. This model supports a mechanistic hypothesis that electron transfer reactions between the Fe‐protein and its redox partners are mutually exclusive.  相似文献   

9.
Summary Under controlled rhizotron conditions, roots of Taxodium distichum L., Quercus lyrata Walt, and Q. falcata var. pagodaefolia Ell. were subjected to low soil redox potentials. Root elongation was inhibited at low soil redox potentials. In T. distichum, redox potentials below +200 mV resulted in a significant inhibition of root elongation. In Q. falcata var. pagodaefolia and Q. lyrata, redox potentials below +350 mV resulted in complete cessation of root growth. Studies on root anatomy indicated that low soil redox potenials resulted in a changed cellular structure in the cortex of T. distichum. However, little change was noted in stress roots of oak species. Alcohol dehydrogenase activity in T. distichum roots was approximately doubled compared to control plants, indicating stimulated alcoholic fermentation. In T. distichum, alcoholic fermentation and anatomical changes contribute to flood tolerance but oak species lack these characteristics.  相似文献   

10.
The 33-kDa manganese-stabilizing protein (MSP) of Photosystem II (PS II) maintains the functional stability of the Mn cluster in the enzyme’s active site. This protein has been shown to possess characteristics similar to those of the intrinsically disordered, or natively unfolded proteins [Lydakis-Simantiris et al. (1999b) Biochemistry 38: 404–414]. Alternately it was proposed that MSP should be classified as a molten globule, based in part on the hypothesis that its lone disulfide bridge is necessary for structural stability and function in solution [Shutova et al. (2000) FEBS Lett. 467: 137–140]. A site-directed mutant MSP (C28A,C51A) that eliminates the disulfide bond reconstitutes O2 evolution activity and binds to MSP-free PS II preparations at wild-type levels [Betts et al. (1996) Biochim. Biophys. Acta 1274: 135–142]. This mutant was further characterized by incubation at 90 °C to determine the effect of loss of the disulfide bridge on MSP thermostability and solution structure. After heating at 90 °C for 20 min, C28A,C51A MSP was still able to bind to PS II preparations at molar stoichiometries similar to those of WT MSP and reconstitute O2 evolution activity. A fraction of the protein aggregates upon heating, but after resolubilization, it regains the ability to bind to PS II and reconstitute O2 evolution activity. Characterization of the solution structure of C28A,C51A MSP, using CD spectroscopy, UV absorption spectroscopy, and gel filtration chromatography, revealed that the mutant has a more disordered solution structure than WT MSP. The disulfide bond is therefore unnecessary for MSP function and the intrinsically disordered characteristics of MSP are not dependent on its presence. However, the disulfide bond does play a role in the solution structure of MSP in vivo, as evidenced by the lability of a C20S MSP mutation in Synechocystis 6803 [Burnap et al. (1994) Biochemistry 33: 13712–13718].  相似文献   

11.
The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ‐subunit through the ferredoxin–thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild‐type levels as irradiance was increased. This effect was caused by an altered redox state of the γ‐subunit under low, but not high, light. The low light‐specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non‐photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin–thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions.  相似文献   

12.
The ferredoxin:thioredoxin reductase is an essential enzyme of the light dependent regulatory system in oxygenic photosynthesis. It is composed of two dissimilar subunits and contains a 4Fe-4S cluster and a redox-active disulfide bridge. Artificial electron donors of redox potentials below –300 mV are capable of reducing the disulfide bridge. Based on our results we speculate that a group of more negative potential than the disulfide bridge is the first acceptor of the electrons in FTR. The chemical reduction of FTR has been used successfully for the detection of the enzyme during its purification.Abbreviation FBPase fructose 1,6-bisphosphatase - FTR ferredoxin:thioredoxin reductase - MV methyl viologen Dedicated to Prof. D.I. Arnon.  相似文献   

13.
The thioredoxin (TRX) superfamily includes redox proteins such as thioredoxins, glutaredoxins (GRXs) and protein disulfide isomerases (PDI). These proteins share a common structural motif named the thioredoxin fold. They are involved in disulfide oxido-reduction and/or isomerization. The sequencing of the Arabidopsisgenome revealed an unsuspected multiplicity of TRX and GRX genes compared to other organisms. The availability of full Chlamydomonasgenome sequence offers the opportunity to determine whether this multiplicity is specific to higher plant species or common to all photosynthetic eukaryotes. We have previously shown that the multiplicity is more limited in Chlamydomonas for TRX and GRX families. We extend here our analysis to the PDI family. This paper presents a comparative analysis of the TRX, GRX and PDI families present in Arabidopsis,Chlamydomonas and Synechocystis. The putative subcellular localization of each protein and its relative expression level, based on EST data, have been investigated. This analysis provides a large overview of the redox regulatory systems present in Chlamydomonas. The data are discussed in view of recent results suggesting a complex cross-talk between the TRX, GRX and PDI redox regulatory networks.  相似文献   

14.
A detailed analysis of the periplasmic electron carriers of the photosynthetic bacterium Ectothiorhodospira sp. has been performed. Two low mid-point redox potential electron carriers, cytochrome c′ and cytochrome c, are detected. A high potential iron–sulfur protein is the only high mid-point redox potential electron transfer component present in the periplasm. Analysis of light-induced absorption changes shows that this high potential iron–sulfur protein acts in vivo as efficient electron donor to the photo-oxidized high potential heme of the Ectothiorhodospira sp. reaction center. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Substitution of the N-terminus of Streptomyces olivaceoviridis xylanase XYNB to generate mutant TB has been previously shown to increase the thermostability of the enzyme. To further improve the stability of this mutant, we introduced a disulfide bridge (C109–C153) into the TB mutant, generating TS. To assess the effect of the disulfide bridge in the wild-type enzyme, the S109C-N153C mutation was also introduced into XYNB, resulting in XS. The mutants were expressed in Pichia pastoris, the recombinant enzymes were purified, and the effect of temperature and pH on enzymatic activity was characterized. Introduction of the disulfide bridge (C109–C153) into XYNB (XS variant) and TB (TS variant) increased the thermostability up to 2.8-fold and 12.4-fold, respectively, relative to XYNB, after incubation at 70°C, pH 6.0, for 20 min. In addition, a synergistic effect of the disulfide bridge and the N-terminus replacement was observed, which extended the half-life of XYNB from 3 to 150 min. Moreover, XS and TS displayed better resistance to acidic conditions compared with the respective enzymes that did not contain a disulfide bridge.  相似文献   

16.
The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1 / 2) changed from − 65.3 to + 146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins.  相似文献   

17.
Laccases have low redox potentials limiting their environmental and industrial applications. The use of laccase mediators has proven to be an effective approach for overcoming the low redox potentials. However, knowledge about the role played by the mediator cocktails in such a laccase-mediator system (LMS) is scarce. Here, we assembled different dual-agent mediator cocktails containing 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), vanillin, and/or acetovanillone, and compared their mediating capabilities with those of each individual mediator alone in oxidation of pentachlorophenol (PCP) by Ganoderma lucidum laccase. Cocktails containing ABTS and either vanillin or acetovanillone strongly promoted PCP removal compared to the use of each mediator alone. The removal enhancement was correlated with mediator molar ratios of the cocktails and incubation times. Analysis of the kinetic constants for each mediator compound showed that G. lucidum laccase was very prone to react with ABTS rather than vanillin and acetovanillone in the cocktails. Moreover, the presence of the ABTS radical (ABTS+•) and vanillin or acetovanillone significantly enhanced PCP removal concomitant with electron transfer from vanillin or acetovanillone to ABTS+•. These results strongly suggest that vanillin and acetovanillone mediate the reaction between ABTS and PCP via multiple sequential electron transfers among laccase and its mediators.  相似文献   

18.
Disulfide bonds play diverse structural and functional roles in proteins. In tear lipocalin (TL), the conserved sole disulfide bond regulates stability and ligand binding. Probing protein structure often involves thiol selective labeling for which removal of the disulfide bonds may be necessary. Loss of the disulfide bond may destabilize the protein so strategies to retain the native state are needed. Several approaches were tested to regain the native conformational state in the disulfide-less protein. These included the addition of trimethylamine N-oxide (TMAO) and the substitution of the Cys residues of disulfide bond with residues that can either form a potential salt bridge or others that can create a hydrophobic interaction. TMAO stabilized the protein relaxed by removal of the disulfide bond. In the disulfide-less mutants of TL, 1.0 M TMAO increased the free energy change (ΔG0) significantly from 2.1 to 3.8 kcal/mol. Moderate recovery was observed for the ligand binding tested with NBD-cholesterol. Because the disulfide bond of TL is solvent exposed, the substitution of the disulfide bond with a potential salt bridge or hydrophobic interaction did not stabilize the protein. This approach should work for buried disulfide bonds. However, for proteins with solvent exposed disulfide bonds, the use of TMAO may be an excellent strategy to restore the native conformational states in disulfide-less analogs of the proteins.  相似文献   

19.
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

20.
Cytochrome c(6A) is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c(6) from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of +71mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c(6A) from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c(6) from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c(6A) and c(6) fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c(6A) acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号