首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We cloned in E. coli the whole 17 nif genes (nifQ-J) of Klebsiella oxytoca NG13 using pBR322 as a vector, and constructed a recombinant plasmid, pNOW25 (nif+, Apr, 42.6 kb). A non nif DNA fragment was deleted from the plasmid with XhoI, and a smaller plasmid, pNOK31 (nif+, Apr, 31.1 kb), was reconstructed.

We constructed the restriction map of the cloned nif genes. The map was the same as that of the K. pneumoniae M5a1 nif genes as to the EcoRI, HindIII, BamHI and XhoI sites, but differed considerably in the PstI, SalI and BglII sites.

E. coli KO60 containing pNOW25 or pNOK31 can grow on a N-free medium. The acetylene reduction activities of KO60 (pNOW25) and KO60 (pNOK31) were 280 nmol and 390 nmol/48 hr per 7 ml of N-free liquid medium, whereas the activity of K. oxytoca NG13 was 3800 nmol. Thus, the expressed activity of the nif system of K. oxytoca is rather low in E. coli even if the nif genes are cloned on a multicopy plasmid.  相似文献   

2.
Summary Three new Tn5-mutagenized nif genes of Azospirillum brasilense were characterized. The sizes of the restriction fragments and the restriction maps of the cloned nif DNA regions showed that these nif genes are distinct from those reported earlier, e.g. nifHDK, nifE, nifUS, fixABC. The Nif27 mutant was identified as a nifA type regulatory gene of A. brasilense (a) by genetic complementation with nifA of Klebsiella pneumoniae, (b) by the absence of nitrogenase iron protein in western protein blots and (c) by its inability to activate expression of a nijH-lacZ fusion. The growth characteristics of the three mutants showed that none of them is defective in general nitrogen regulatory (ntr) genes. Also, no homology was detected between the three nif DNA regions of the mutants, cloned in pMS188, pMS189 and pMS197, and the K. pneumoniae nif, gInA or ntr genes. In addition, the fixABC genes of Bradyrhizobium japonicum did not show any hybridization with the cloned Azospirillum genes. Unlike the situation in enteric bacteria, the nif genes in A. brasilense are scattered and span a region of about 65 kb.  相似文献   

3.
Summary A HindIII (17.0 kb) and an EcoRl restriction fragment (6.9 kb) of Klebsiella pneumoniae nif DNA were cloned on two small amplifiable plasmids, pCM1 and pSA30 respectively. These plasmids between them carry 14 of the 15 known Klebsiella nif genes. The operon for the three structural genes for nitrogenase, nifpHDK, is carried on pSA30: four and five of the remaining six operons are on pCRA37 and pCM1 respectively. All of the nif genes were assigned to endonculease restriction fragments of DNA using the Southern blotting technique (Southern, 1975) with total DNA of nif insertion mutants and radioactive plasmid DNA which contained cloned nif DNA sequences. Their locations were consistent with the genetic map of nif genes. The estimated size of the nif gene cluster was 24 kb.  相似文献   

4.
Hierarchical clustering and similarity coefficients of pairwise alignments of the published nucleotide sequences of 27nifH genes suggest thatnif genes are as ancient as the archaebacteria and clostridia. The positions ofnifHl ofMethanococcus thermolithotrophicus, nifH3 ofClostridium pasteurianum, nifH3 ofAzotobacter vinelandii andnifH ofFrankia suggest that a variety of lateral transfers may have occurred during evolution ofnifH gene. The genes for type 3 nitrogenase ofA. vinelandii may have diverged early from methanogens and clostridia. A high similarity coefficient with the derived amino acid sequence of type 3 nitrogenase suggests the presence of a functionally similar enzyme inC. pasteurianum. The type 2 nitrogenase genenifH2 of azotobacters seems to have originated recently from the genenifHl for conventional type I nitrogenase. RhizobialnifH genes comprise two closely related but discrete clusters that are in consonance with the plasmid or chromosomal location ofnif genes. The chromosomal and plasmid locatednifH of rhizobia seem to have evolved independently but contemporaneously.  相似文献   

5.
To identify Rhodobacter capsulatus nif genes necessary for the alternative nitrogenase, strains carrying defined mutations in 32 genes and open reading frames of nif region A, B or C were constructed. The ability of these mutants to grow on nitrogen-free medium with molybdenum (Nif phenotype) or in a nifHDK deletion background on medium without molybdenum (Anf phenotype) was tested. Nine nif genes and nif-associated coding regions are absolutely essential for the alternative nitrogenase. These genes comprise nifV and nifB, the nif-specific ntr system (nifR1, R2, R4) and four open reading frames, which exhibit no homology to known genes. In addition, a significantly reduced activity of both the alternative nitrogenase and the molybdenum-dependent nitrogenase was found for fdxN mutants. By random Tn5 mutagenesis of a nifHDK deletion strain 42 Anf? mutants were isolated. Southern hybridization experiments demonstrated that 17 of these Tn5 mutants were localized in at least 13 different restriction fragments outside of known nif regions. Ten different Anf? Tn5 mutations are clustered on a 6 kb DNA fragment of the chromosome designated anf region A. DNA sequence analysis revealed that this region contained the structural genes of the alternative nitrogenase (anfHDGK). The identification of several Tn5 insertions mapping outside of anf region A indicated that at least 10 genes specific for the alternative nitrogenase are present in R. capsulatus.  相似文献   

6.
Summary A molecular map was constructed linking the nitrogenase structural genes (nif) and nodulation genes (nod) in the white clover symbiont, Rhizobium trifolii. In R. trifolii strain ANU843 these two genetic regions are located some 16 kilobases (kb) apart on the 180 kb symbiotic (Sym) plasmid. The molecular linkage of nod and nif genetic regions was established by hybridization analysis using recombinant plasmids containing overlapping cloned sequences. Nodulation genes were located by means of a Tn5-induced nodulation-defective mutant that failed to induce clover root hair curling (Hac- phenotype). A cloned wild-type DNA fragment was shown to phenotypically correct the Hac- mutation by complementation. The nifHDK genes were cloned by positive hybridization to another R. trifolii nif-specific probe. Location of the nif genes relative to the nod genes was established by analysis of a Sym plasmid deletion derivative.  相似文献   

7.
Expression of Frankia genes involved in nitrogen fixation was studied in Alnus glutinosa nodules using the in situ hybridization technique. The results show that high level expression of nif genes does not occur immediately upon infection of cortical cells by Frankia. Also, only in the infected cells near the tips of the nodule lobes, nif genes are expressed at high levels. In the majority of infected cells, nif gene expression is rather low.  相似文献   

8.
The plasmid pRD1 containing the nif genes from Klebsiella pneumoniae was transferred by conjugation from Escherichia coli to Pseudomonas putida isolated from the tundra soil. 6-Cyanopurine, acetylene reduction and immunological tests showed that the nif genes were not expressed in P. putida. Existence of the nif genes in P. putida transconjugants was detected by transferring them to E. coli C600, which does not fix nitrogen. Existence of the nif genes in E. coli C600 transconjugants was detected immunologically and by acetylene reduction tests.  相似文献   

9.
10.
A small plasmid containing the entire nif gene cluster of Enterobacter agglomerans 333 as an excisable cassette has been constructed, using pACYC177 as a vector. Two cosmid clones taken from a gene library of E. agglomerans plasmid pEA3 were used as a source of nif genes. A SmaI fragment of peaMS2-2, containing the H,D,K,Y,E,N,X,U,S,V,W,Z,M,L,A and B genes and an ApaI fragment of peaMS2-16 containing nifA,B,Q,F and J were selected to construct pMH2. The resulting plasmid of 33 kb carries the complete nif gene cluster as a nif cassette on a single XbaI fragment. The nif construct pMH2 in Escherichia coli strains has significant nitrogenase activity compared to wild-type E. agglomerans 333. The nif gene cluster construct was found to be very stable.  相似文献   

11.
Summary A library of Rhodopseudomonas capsulata chromosomal DNA was constructed in the broad host range cosmid vector pLAFR1. The library was used to isolate nitrogen fixation genes by complementation of R. capsulata Nif- mutants. Four complementing regions were localized on different cloned DNA fragments by Tn5 and mini-Mu mutagenesis. Additional nif genes were identified by recombination of transposons from the nif cosmids into the R. capsulata chromosome resulting in the creation of new Nif- mutations. Most of the newly cloned DNA fragments containing nif genes were found to be unlinked to any other by Southern hybridization of the cloned DNA to chromosomal DNA blots. One of the new fragments was linked to the nifHDK genes. Another cluster spanning 10–12 kilobase pairs contained a number of nif genes, possibly as many as eight.  相似文献   

12.
We examined 27 strains of chickpea rhizobia from different geographic origins for indigenous plasmids, location and organization of nitrogen fixation (nif) genes, and cultural properties currently used to separate fast- and slow-growing groups of rhizobia. By using an in-well lysis and electrophoresis procedure one to three plasmids of molecular weights ranging from 35 to higher than 380 Mdal were demonstrated in each of 19 strains, whereas no plasmids were detected in the eight remaining strains. Nitrogenase structural genes homologous to Rhizobium meliloti nifHD, were not detected in plasmids of 26 out of the 27 strains tested. Hybridization of EcoRI digested total DNA from these 26 strains to the nif probe from R. meliloti indicated that the organization of nifHD genes was highly conserved in chickpea rhizobia. The only exception was strain IC-72 M which harboured a plasmid of 140 Mdal with homology to the R. meliloti nif DNA and exhibited also a unique organization of nifHD genes. The chickpea rhizobia strains showed a wide variation of growth rates (generation times ranged from 4.0 to 14.5 h) in yeast extract-mannitol medium but appear to be relatively homogeneous in terms of acid production in this medium and acid reaction in litmus milk. Although strains with fast and slow growth rates were identified, DNA/DNA hybridization experiments using a nifHD-specific probe, and the cultural properties examined so far do not support the separation of chickpea rhizobia into two distinct groups of the classical fast- and slow-growing types of rhizobia.  相似文献   

13.
Summary A cluster analysis based on codon usage in genes for biological nitrogen fixation (nif genes) grouped diazotrophs into three distinct classes: anaerobes, cyanobacteria, and aerobes. In thenif genes ofKlebsiella pneumoniae there was no evidence for selection pressure in favor of highly translatable codons. However, in the nitrogen regulatory operonglnAntrBntrC of enteric bacteria the stoichiometrically high level of glutamine synthetase may be facilitated by the presence of efficiently translatable codons inglnA. Thenif genes of the cyanobacteriumAnabaena showed codon selection in favor of translational efficiency. Computation of codon adaptation indices for expression in heterologous systems indicated that the reading frames most suitable for expression ofnif genes inEscherichia coli, Bacillus subtilis, andSaccharomyces cerevisiae were present in azotobacters, clostridia, and cyanobacteria, respectively. In codon-usage-based cluster analysis, type 3 nitrogenase genes ofAzotobacter vinelandii grouped along with type 1 and type 2 genes. This is in contrast to the nucleotide sequence-based multiple alignment in which type 3 nitrogenase genes ofA. vinelandii have been reported to cluster with entirely unrelated diazotrophs such as methanogens and clostridia. This may be indicative of lateral transfer ofnif genes among widely divergent taxons. The chromosomal- and plasmid-locatednif genes of rhizobia also cluster separately in nucleotide sequence-based analysis but showed similar codon usage. These analyses suggested that the phylogeny ofnif genes drawn on the basis of nucleotide sequence homology was not masked by the taxon-specific pressure on codon usage.  相似文献   

14.
Strains of the obligately aerobic nitrogen fixing organismAzotobacter chroococcum were constructed which contained defined chromosomal deletions in which the nitrogenase structural genenifHDK cluster (nifH for the polypeptide of the Fe-protein component of nitrogenase andnifD andnifK for the alpha and beta subunits respectively of the MoFe-protein component of the enzyme) was replaced by a kanamycin resistance gene. N2 fixation was nevertheless observed in deletion strains though only in a molybdenum-deficient medium or in spontaneously arising tungstate-resistant derivatives. In comparison with the parent strain growing in molybdenum-sufficient medium, diazotrophic growth was slow and the nitrogenase activity in vivo was characterised by disproportionately low rates of C2H2-reduction compared to H2-evolution and relative insensitivity of H2-evolution to inhibition by C2H2. The findings show reiteration of functional structural genes for nitrogenase inA. chroococcum consistent with our previous observation of twonifH genes in this organism and detection in this work of a secondnifK-like sequence in the genomes of both parent and deletion strains whenA. chroococcum nifK DNA was used as a probe.  相似文献   

15.
16.
The sizes of endonuclease digestion fragments of DNA from cyanobacteria in symbiotic association with Azolla caroliniana or Anthoceros punctatus, or in free-living culture, were compared by Southern hybridization using cloned nitrogenase (nif) genes from Anabaena sp. PCC 7120 as probes. The restriction fragment pattern produced by cyanobacteria isolated from A. caroliniana by culture through symbiotic association with Anthoceros differed from that of the major symbiotic cyanobacterium freshly separated from A. caroliniana. The results indicate that minor cyanobacterial symbionts occur in association with Azolla and that the dominant symbiont was not cultured in the free-living state. Both the absence of hybridization to an xisA gene probe and the mapping of restriction fragments indicated a contiguous nifHDK organization in all cells of the symbiont in association with Azolla. On the other hand, in the cultured isolate from Azolla and in Nostoc sp. 7801, the nifD and nifK genes are nominally separated by an interval of unknown length, compatible with the interruption of the nifHDK operon by a DNA element as observed in Anabaena sp. PCC 7120. In the above cultured strains, restriction fragments consistent with a contiguous nifHDK operon were also present at varying hybridization intensities, especially in Nostoc sp. 7801 grown in association with Anthoceros, presumably due to gene rearrangement in a fraction of the cells.Non-standard abbreviations bp base pairs - kb kilobase pairs - kd kilodaltons  相似文献   

17.
Summary The P-1 incompatibility group plasmid RP1 transfers itself from Escherichia coli J53 to the clover endosymbiont bacterium Rhizobium trifolii strain T1 at low frequency in agar surface matings. R. trifolii T1 R-plasmid recipients display a phenotype identical to the wild-type parent strain in all respects except RP1 antibiotic resistances, allowing straightforward donor counterselection and differentiation of excojugants in further intergeneric plasmid transfer experiments. Hence RP1 can readily transfer itself intergenerically from R. trifolii T1 to the related plant pathogenic organism Agrobacterium tumefaciens and to a strain of the free-living diazotroph Klebsiella pneumoniae.Using R. trifolii T1 (RP1) as donor and as recipient LBA 4006, an avirulent strain of A. tumefaciens lacking the tumour-inducing (Ti) plasmid, selection was made for intergeneric transfer of the R-plasmid and its potential as vector of nitrogen-fixation genes evaluated by subsequent indirect screening. Exconjugant Agrobacteria were obtained which carried RP1 resistance markers and, given specific physiological conditions, would reduce acetylene under air. This is the first report of expression of nif genes in a hybrid strain of A. tumefaciens and is of interest since the Ti plasmid of this organism has been suggested as a natural vector for the introduction of these genes into plants. Plasmid RP1 also cotransferred Rhizobium nif genes to KP52, a strain of K. pneumoniae M5al, with deletion by phage eduction of the chromosomal genes for histidine biosynthesis, one of the nif regulatory genes (nif A), the gene for molybdenum cofactor (nif B) and for an electron transport protein of the nitrogen-fixation pathway (nif F). KP52 exconjugants carried RP1 drug resistances and reduced acetylene under anaerobic conditions.  相似文献   

18.
A Rhizobium trifolii symbiotic plasmid specific gene library was constructed and the physical organisation of regions homologous to nifHDK, nifA and nod genes was determined. These symbiotic gene regions were localised to u 25 kb region on the sym-plasmid, pPN1. In addition four copies of a reiterated sequence were identified on this plasmid, with one copy adjacent to nifH. No rearrangement of these reiterated sequences was observed between R. trifolii bacterial and bacteroid DNA. Analysis of a deletion derivative of pPN1 showed that these sequences were spread over a 110 kb region to the left of nifA.  相似文献   

19.
The Sym plasmid of Rhizobium leguminosarum, which is called pRle1001a, was found to be transcribed in both cultured bacteria and in bacteroids isolated from mature pea root nodules. The transcribed regions were localized on a restriction endonuclease map of this plasmid. None of the areas expressed in the endosymbiotic form overlapped with the one that is expressed in stationary phase cultures of the bacteria. One relatively large region that is actively transcribed in nitrogen-fixing bacteroids included the DNA homologous to the structural nif genes D and H of Klebsiella pneumoniae. This transcribed segment is also highly conserved in the Sym plasmid of R. trifolii 5 and a plasmid of R. phaseoli 3622, which carries nif genes. It is assumed that this region carries the nif operon.  相似文献   

20.
Summary Cells of a non-nitrogen-fixing, drug-sensitive Enterobacter cloacae strain, isolated from the rhizosphere of Festuca heterophylla, were mated to Escherichia coli cells harboring plasmid pRD1. This plasmid carries the nitrogen-fixation (nif+) genes as well as three markers of drug resistance. After mating, triple-resistant Enterobacter transferants could be selected. These were screened for plasmids, acetylene reduction, and stability of the transferred markers.Transferants contained plasmid pRD1. Of 48, 43 were acetylene-reducing and therefore carried the nif+ genes. Triple-resistance was stable upon passage in liquid minimal medium, but the number of cells with nif+ genes decreased. Both the triple-resistant and the nif+ genotypes decreased in complete medium, although by different rates, depending on the particular line. The most stable line, M14, was chosen and checked further.Samples taken after 8–14 passages in minimal medium contained cells with different genotypes, plasmid sizes smaller than the original plasmid pRD1 and no free plasmids. Progeny of the latter cells, in addition to being triple-resistant, were the best acetylene reducers. It is concluded that in these cells the plasmid pRD1 with all its relevant genes had become integrated into the recipients' chromosome.Grass seedlings were inoculated with the bacteria containing integrated plasmid pRD1. They were then planted into pots with sterile ash and watered with a nutrient salt solution of limited nitrogen content. Sampling after 8 weeks showed that the inoculated bacteria were preserved, as demonstrated by their triple-resistance. They could also still fix nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号