首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
G Jay  R P Shiu  F T Jay  A S Levine  I Pastan 《Cell》1978,13(3):527-534
Using antisera obtained from rats bearing Schmidt-Ruppin strain Rous sarcoma virus-induced tumors, we have idnetified a protein with an apparent molecular weight of 56,000 daltons and an isoelectric point of 6.3 in extracts of chick embryo fibroblasts transformed by a wild-type nondefective Rous sarcoma virus (Schmidt-Ruppin strain). This protein was not found in cells infected by trnasformation-defective mutants with either a partial or complete deletion of the src gene, nor in cells infected by a nontransforming avian leukosis virus. The 56,000 dalton molecular weight protein was found to be synthesized at both the permissive and nonpermissive temperatures in cells infected by either of two conditionallethal mutants that are temperature-sensitive in cell transformation. The amount of this protein, however, accumulated in cells infected by these temperature-sensitive mutants, relative to the structural polypeptides, differed significnatly from that seen with the nondefective virus. Pulsechase experiments indicate that the protein is extremely unstable, with a half-life of about 20 min, and does not serve as a precursor to any of the detectable virion polypeptides. Furthermore, incubation of the rat antiserum with purified, disrupted virus did not affect its immunoreactivity to this particular protein. We conclude that this 56,000 dalton molecular weight protein is a nonstructural protein specific to cells transformed by Rous sarcoma virus.  相似文献   

2.
The myeloproliferative sarcoma virus is molecularly related to the Moloney sarcoma virus (Pragnell et al., J. Virol. 38:952-957, 1981), but causes both fibroblast transformation in vitro and leukemic changes--including spleen focus formation--in adult mice. The fibroblast transforming properties of myeloproliferative sarcoma virus were used to select viral temperature-sensitive mutants at 39.5 degrees C, the nonpermissive temperature. These mutants are temperature sensitive in the maintenance of the transformed state. This was also shown by cytoskeletal changes of the infected cells at permissive and nonpermissive temperatures. Viruses released from cells maintained at both the permissive and nonpermissive temperature are temperature sensitive in fibroblast transformation functions. All temperature-sensitive mutants show only a low reversion rate to wild-type transforming function. The myeloproliferative sarcoma virus temperature-sensitive mutants are inefficient in causing leukemic transformation (spleen enlargement, focus formation) in mice at the normal temperature. A method to maintain a low body temperature (33 to 34 degrees C) in mice is described. One temperature-sensitive mutant was checked at low body temperature and did not induce leukemia. These data thus indicate that the same or related viral functions are responsible for hematopoietic and fibroblast transformation.  相似文献   

3.
The structural proteins of wild-type Sindbis virus were shown to arise by posttranslational cleavage of larger precursors. The proteins synthesized in wildtype infection were compared with those specified by ts-11, a temperature-sensitive mutant unable to synthesize viral RNA at the restrictive temperature. Abnormally large, virus-specific proteins were found in the mutant-infected cells after the shift from 28 C to 41.5 C. These large polypeptides were presumably precursors which were cleaved too rapidly to be detected in the wild-type infection. The largest had a molecular weight of 133,000 and was the same size as the apparent precursor detected during infection with a group of Sindbis mutants which could not form nucleocapsids at the nonpermissive temperature. The stability of ts-11-specific RNA synthesis, after shift from permissive to restrictive conditions, differed from that in cells infected by wild-type virus, indicating that the virus had a genetic lesion in an enzyme involved in RNA synthesis. This mutation might have caused the precursor to fold incorrectly so that it could not be cleaved. The possibility cannot be excluded, however, that a second lesion in an uncharacterized viral function, such as a protease, was the cause of the accumulation of the precursors.  相似文献   

4.
Thirty temperature-sensitive mutants of encephalomyocarditis virus have been isolated and partially characterized. Fifteen of these mutants are phenotypically RNA+ thirteen are RNA-, and two are RNA +/-. Six RNA + mutants, one RNA- mutants, and one RNA +/- mutant have virions which are more thermosensitive at 56 degree C than the wild-type virions. Hela cells infected at the nonpermissive temperature with any of the RNA+ mutants produced neither infective nor noninfective viral particles. The cleavage of the precursor polypeptides in cells infected with 11 of the RNA+ mutants was defective at the nonpermissive temperature. This defect in cleavage occurred only in those precursor polypeptides leading to capsid proteins.  相似文献   

5.
All Sindbis virus temperature-sensitive mutants defective in "late" functions were systematically surveyed by acrylamide-gel electrophoresis for similarities and differences in the intracellular pattern of virus-specific proteins synthesized at the permissive and nonpermissive temperatures. Only cells infected with mutants of complementation group C showed an altered pattern. At the nonpermissive temperature, these mutants failed to induce the synthesis of a polypeptide corresponding to the nucleocapsid protein and instead overproduced a protein of higher molecular weight than either viral structural protein. This defect was shown to be irreversible by the finding that (3)H-leucine incorporated at 41.5 C specifically failed to appear in the nucleocapsid of virions subsequently released at 29 C. Attempts to demonstrate a precursor protein in wild-type infections were inconclusive.  相似文献   

6.
A method for induction and selection of temperature-sensitive mutants of herpes simplex virus is presented. After the infected cells were treated with 5-bromodeoxyuridine, the virus was extracted by repeated freezing and thawing and cloned in microcultures which were then incubated at permissive temperature until viral plaques appeared. The microcultures were then replicated at nonpermissive temperature. Clones not forming plaques in these latter were further purified and examined for temperature-sensitive characteristics. Viral clones mutated in plaque-forming ability or in yield were obtained and preliminarily characterized.  相似文献   

7.
Simian virus 40 large T antigen is a multifunctional protein which exists in different molecular weight forms. According to several reports, T antigen encoded by temperature-sensitive simian virus 40 A locus mutants (tsA) is unable to oligomerize into high-molecular-weight species. To try to correlate structural and functional properties, we selected tsA58 and tsA1499, both of which are heat sensitive for lytic growth, but only tsA58 is heat sensitive for transformation. Here we report that at permissive and nonpermissive temperatures, T antigen from tsA1499-infected monkey cells retained the ability to oligomerize, whereas reported previously, tsA58 T antigen failed to oligomerize at the nonpermissive temperature. Furthermore, we studied the formation of complexes between T antigen and the cellular p53 protein (T-p53) late in infection. Corresponding to its heat-stable oligomerization properties, T antigen encoded by tsA1499 formed T-p53 complexes regardless of temperature. In contrast, tsA58 encoded T-p53 complexes, preformed at the permissive temperature, remained heat stable after shifting up to the nonpermissive temperature; but at this temperature no new T-p53 complexes arose. The mutants did not replicate viral DNA at the nonpermissive temperature, suggesting that neither the oligomerization of T antigen nor the formation of T-p53 complexes seems to be sufficient for viral DNA replication or for the expression of late viral proteins.  相似文献   

8.
Cricket paralysis virus purified from Galleria mellonella larvae was shown to be similar to virus purified from Drosophila melanogaster cells. Cricket paralysis virus contained three major structural polypeptides of similar molecular weight (around 30,000), had a buoyant density of 1.344 g/ml, and had a capsid diameter of 27 nm. Twenty virus-induced polypeptides could be detected in CrPV-infected Drosophila cells. Two major polypeptides found in the infected cells corresponded to two structural viral polypeptides (VP1 and VP3), whereas the third major intracellular polypeptide was the apparent precursor of the third viral structural polypeptide (VP2). Three of the primary virus-induced polypeptides had molecular weights of 144,000, 124,000, and 115,000. These and other polypeptides were chased into lower-molecular-weight proteins when excess cold methionine was added after a short [35S]methionine pulse. Although cricket paralysis virus has a number of characteristics in common with the mammalian enteroviruses, the extremely fast processing of high-molecular-weight polypeptides into viral proteins seems atypical. Also, no VP4 (8,000 to 10,000 molecular weight) has been found in the virus particles.  相似文献   

9.
Some temperature-sensitive mutants of vesicular stomatitis virus were tested for their ability to block the initiation of deoxyribonucleic acid (DNA) synthesis and division in serum-stimulated hamster embryo fibroblasts at the nonpermissive temperature. Although the parental strain blocked these processes, one particular mutant allowed essentially normal DNA synthesis and division. By autoradiography, it was shown that individual cells infected with this mutant could synthesize viral ribonucleic acid and at the same time initiate DNA synthesis and divide. Cells infected with such conditional defective mutants appear to be suitable for studies on the effects of persistent viral infections on molecular and cellular functions in proliferating cell populations.  相似文献   

10.
The synthesis of viral polypeptides, distribution of viral antigens, and morphogenesis of viral structures have been examined in cells infected with temperature-sensitive (ts) mutants of SA11 representing 10 recombination groups. At the permissive temperature (31 degrees C) the synthesis of viral polypeptides and the distribution of viral antigens did not differ significantly from those of the wild type. At the nonpermissive temperature (39 degrees C) some mutants (tsB, -C, -E, -F, and -G) synthesized significantly smaller amounts of viral polypeptides and had a very diffuse distribution of viral antigen. Several of the mutants synthesized one or more electrophoretically aberrant polypeptide species at both 31 and 39 degrees C. All of the mutants, except tsF, assembled morphogenetic intermediates at 39 degrees C. Aberrant intermediates were assembled in all mutants at 31 and 39 degrees C. No specific morphogenic defect could be associated with any of the ts mutants.  相似文献   

11.
Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA- ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 degrees C) to the nonpermissive (39 degrees C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA- phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 degrees C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant. Subviral (53S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 degrees C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.  相似文献   

12.
13.
Biochemical transformation assays of herpes simplex virus type 1 temperature-sensitive (ts) mutants distinguished three groups of mutants with regard to their thymidine kinase (TK) transforming ability: those incapable of transferring the TK gene at either the permissive or restrictive temperatures (group I); those resembling the wild-type virus, and therefore able to transform at both the permissive and nonpermissive temperatures (group II); and those that failed to transform or exhibited very low transformation frequencies at the permissive temperature but were able to transform at the nonpermissive temperature (group III). Two mutants in group II exhibited greatly enhanced transformation efficiency at the permissive temperature. The ts lesions in the majority of the mutants tested map between 0.30 and 0.60 units on the viral genome. Mutants with TK-positive (TK+), but DNA-negative, phenotypes at the nonpermissive temperature produced no TK+ transformants at the permissive temperature and only unstable transformants at the nonpermissive temperature. This suggests that a function which is required for viral DNA synthesis is also required to obtain stable expression or to transfer the TK+ gene or both when transfer is mediated by the entire viral genome.  相似文献   

14.
The synthesis and processing of virus-specific precursor polypeptides in NIH/3T3 cells infected at the permissive temperature (31 degrees C) with temperature-sensitive (ts) mutants of Rauscher murine leukemia virus was studied in pulse-chase experiments at the permissive and nonpermissive (39 degrees C) temperatures. The newly synthesized virus-specific polypeptides were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera against Rauscher murine leukemia virus proteins. In cells infected with ts mutants defective in early replication steps (the early mutants ts17 and ts29), and ts mutants defective in postintegration steps (the late mutants ts25 and ts26), the processing of the primary gag gene product was impaired at the nonpermissive temperature. gag-pr75 of all four mutants was converted into gag-pr65; however, gag-pr65 accumulated at the nonpermissive temperature, and the main internal virion polypeptide p30 was not formed. Therefore, the proteolytic cleavage is blocked beyond gag-pr65. Concomitantly, the formation of the env gene-related polypeptide p12(E) of all four mutants was blocked at the restrictive temperature. In contrast, cells infected with the late mutant ts28, which produced noninfectious virions at 39 degrees C, showed a normal turnover of the gag and env precursor polypeptides.  相似文献   

15.
We report on the properties of a temperature-sensitive mutant produced by transfection of cells with intact DNA and a specific DNA fragment mutagenized with low levels of hydroxylamine. The plating efficiency of the mutant at 39 degrees C relative to that at 33.5 degrees C was 5 X 10(-6). The pattern of polypeptides produced at the nonpermissive temperature was similar to that seen with wild-type virus in infected cells treated with inhibitory concentrations of phosphonoacetic acid in that alpha and beta polypeptides were produced, whereas most gamma polypeptides were either reduced or absent. Consistently, the mutant did not make viral DNA, although temperature sensitivity of the viral DNA polymerase could not be demonstrated. Marker rescue studies with herpes simplex virus type 2 (HSV-2) DNA mapped the mutant in the L component within map positions 0.385 and 0.402 in the prototype (P) arrangement of the HSV-1 genome. Analysis of the recombinants permitted the mapping of the genes specifying infected cell polypeptides 36, 35, 37, 19.5, 11, 8, 2, 43, and 44, but only the infected cell polypeptide 8 of HSV-2 was consistently made by all recombinants containing demonstrable HSV-2 sequences. Marker rescue studies with cloned HSV-1 DNA fragments mapped the temperature-sensitive lesion within less than 10(3) base pairs between 0.383 and 0.388 map units. Translation of the RNA hybridizing to cloned HSV-1 DNA, encompassing the smallest region containing the mutation, revealed polypeptide 8 (128,000 molecular weight), which was previously identified as a beta polypeptide with high affinity for viral DNA, and a polypeptide (25,000 molecular weight) not previously identified in lysates of labeled cells.  相似文献   

16.
An analysis of reovirus-specific polypeptides in cells infected with temperature-sensitive mutants under permissive and nonpermissive conditions revealed the presence of (i) all the known viral polypeptides and (ii) aberrant migration of the mu 1 and mu 2 polypeptides in four groups of mutants.  相似文献   

17.
  相似文献   

18.
The phenotypic defects of three temperature-sensitive (ts) mutants of vaccinia virus, the ts mutations of which were mapped to the gene for one of the high-molecular-weight subunits of the virion-associated DNA-dependent RNA polymerase, were characterized. Because the virion RNA polymerase is required for the initiation of the viral replication cycle, it has been predicted that this type of mutant is defective in viral DNA replication and the synthesis of early viral proteins at the nonpermissive temperature. However, all three mutants synthesized both DNA and early proteins, and two of the three synthesized late proteins as well. RNA synthesis in vitro by permeabilized mutant virions was not more ts than that by the wild type. Furthermore, only one of three RNA polymerase activities that was partially purified from virions assembled at the permissive temperature displayed altered biochemical properties in vitro that could be correlated with its ts mutation: the ts13 activity had reduced specific activity, increased temperature sensitivity, and increased thermolability under a variety of preincubation conditions. Although the partially purified polymerase activity of a second mutant, ts72, was also more thermolabile than the wild-type activity, the thermolability was shown to be the result of a second mutation within the RNA polymerase gene. These results suggest that the defects in these mutants affect the assembly of newly synthesized polymerase subunits into active enzyme or the incorporation of RNA polymerase into maturing virions; once synthesized at the permissive temperature, the mutant polymerases are able to function in the initiation of subsequent rounds of infection at the nonpermissive temperature.  相似文献   

19.
The structure and replication of a cold-adapted, temperature-sensitive (TS) mutant of an Asian (H2N2) influenza virus was compared with that of its wild-type (WT) parent. Viruses were grown in a chicken kidney cell system, and at the nonpermissive temperature of 40 C, production of infectious TS virus was about 100,000-fold less than at 35 C, in contrast to WT virus. Major structural polypeptides of each virus grown at 35 C were similar, except that the hemagglutinin glycopolypeptide (HA) of the TS virions was slightly more heterogenous than that of WT virions. Synthesis of viral polypeptides was examined by sodium dodecyl sulfate acrylamide gel electrophoresis of pulse-labeled infected cells. This revealed a defect in the synthesis of TS viral hemagglutinin that was most pronounced at the nonpermissive temperature. Other TS viral polypeptides appeared to be synthesized normally at 40 C. A defect in the TS virus hemagglutinin was also indicated by serological studies that demonstrated that TS virus hemagglutinin had lost antigenic sites present on the WT virus. Thus, it is concluded that the virus mutant examined contains lesions in the hemagglutinin gene, although the possibility of additional unrecognized lesions is not excluded.  相似文献   

20.
Antigens detected by the complement-fixation (CF) test were prepared from BHK-21 cells infected with Pichinde virus.The preparations contained two antigens demonstrable by immunodiffusion. The antigen present in abundance was heat stable, Pronase resistant, and had a molecular weight of 20,000 to 30,000 as estimated by gel filtration. Polyacrylamide gel electrophoresis of purified antigen demonstrated two low-molecular-weight polypeptides. An identical antigenic determinant was found by disrupting purified virus with Nonidet P-40; however, none of the viral polypeptides co-migrated with the polypeptides derived from purified CF antigen. Pronase digestion of disrupted virus did not alter antigenicity but degraded the viral peptides to sizes similar to those associated with the major CF antigen. These observations suggest that the major CF antigen of Pichnide virus is a cleavage product of the structural proteins of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号