首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular ATP (eATP) plays essential roles in plant growth, development, and stress tolerance. Extracellular ATP-regulated stomatal movement of Arabidopsis thaliana has been reported. Here, ATP was found to promote stomatal opening of Vicia faba in a dose-dependent manner. Three weakly hydrolysable ATP analogs (adenosine 5′-O-(3-thio) triphosphate (ATPγS), 3′-O-(4-benzoyl) benzoyl adenosine 5′-triphosphate (Bz-ATP) and 2-methylthio-adenosine 5′-triphosphate (2meATP)) showed similar effects, indicating that ATP acts as a signal molecule rather than an energy charger. ADP promoted stomatal opening, while AMP and adenosine did not affect stomatal movement. An ATP-promoted stomatal opening was blocked by the NADPH oxidase inhibitor diphenylene iodonium (DPI), the reductant dithiothreitol (DTT) or the Ca2+ channel blockers GdCl3 and LaCl3. A hyperpolarization-activated Ca2+ channel was detected in plasma membrane of guard cell protoplast. Extracellular ATP and weakly hydrolyzable ATP analogs activated this Ca2+ channel significantly. Extracellular ATP-promoted Ca2+ channel activation was markedly inhibited by DPI or DTT. These results indicated that eATP may promote stomatal opening via reactive oxygen species that regulate guard cell plasma membrane Ca2+ channels.  相似文献   

2.
Abstract: We found that extracellular ATP can increase the intracellular Ca2+ concentration ([Ca2+]i) in mouse pineal gland tumor (PGT-β) cells. Studies of the [Ca2+]i rise using nucleotides and ATP analogues established the following potency order: ATP, adenosine 5′-O-(3-thiotriphosphate) ≥ UTP > 2-chloro-ATP > 3′-O-(4-benzoyl)benzoyl ATP, GTP ≥ 2-methylthio ATP, adenosine 5′-O-(2-thiodiphosphate) (ADPβS) > CTP. AMP, adenosine, α,β-methyleneadenosine 5′-triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and UMP had little or no effect on the [Ca2+]i rise. Raising the extracellular Mg2+ concentration to 10 mM decreases the ATP-and UTP-induced [Ca2+]i rise, because the responses depend on the ATP4? and UTP4? concentrations, respectively. The P2U purinoceptor-selective agonist UTP and the P2Y purinoceptor-selective agonist ADPβS induce inositol 1,4,5-trisphosphate generation in a concentration-dependent manner with maximal effective concentrations of ~100 µM. In sequential stimulation, UTP and ADPβS do not interfere with each other in raising the [Ca2+]i. Costimulation with UTP and ADPβS results in additive inositol 1,4,5-trisphosphate generation to a similar extent as is achieved with ATP alone. Pretreatment with pertussis toxin inhibits the action of UTP and ATP by maximally 45–55%, whereas it has no effect on the ADPβS response. Treatment with 1 µM phorbol 12-myristate 13-acetate inhibits the ADPβS-induced [Ca2+]i rise more effectively than the ATP- and UTP-induced responses. These results suggest that P2U and P2Y purinoceptors coexist on PGT-β cells and that both receptors are linked to phospholipase C.  相似文献   

3.
Heavy meromyosin subfragment-1 and its trinitrophenylated derivative have been chromatographed on immobilized ATP, ADP and adenosine 5'-(geta, gamma-imino) triphosphate affinity chromatography columns, in the presence and in the absence of Ng-2+ or Ca-2+.ma-32-P] ATP columns. While the divalent cations had little effect on the chromatographic pattern in the case of the non-hydrolyzable ADP and adenosine 5' (beta, gamma-imino) triphosphate, they catalyzed splitting in the case of ATP and at the same time strongly increased the affinity of adsorption of the proteins. The protein-elution and the Pi-release patterns were different for the native and the modified proteins. These results have been interpreted in terms of protein binding to the various intermediates of the ATP hydrolysis reaction.  相似文献   

4.
Activity of purified protocollagen proline hydroxylase was enhanced several fold by addition of nucleoside triphosphates (3 mM) to the assay medium, but nucleoside mono-and diphosphates were almost inactive. Pyrimidine nucleotides were less effective compared with purine nucleotides, among which GTP was the most effective. dATP and ATP analogues such as adenosine 5′-(β,γ-imino) triphosphate (AMP-PNP), adenosine 5′-(β,γ-methylene) triphosphate (AMP-PCP), etc. were inactive. ATP or GTP showed no additive effect on enzyme activity stimulated by dithiothreitol or bovine serum albumin.  相似文献   

5.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   

6.
Maria Krasteva 《BBA》2007,1767(1):114-123
We studied binding of ATP and of the ATP analogs adenosine 5′-(β,γ-methylene)triphosphate (AMPCP) and β,γ-imidoadenosine 5′-triphosphate (AMPPNP) to the Ca2+-ATPase of the sarcoplasmic reticulum membrane (SERCA1a) with time-resolved infrared spectroscopy. In our experiments, ATP reacted with ATPase which had AMPPCP or AMPPNP bound. These experiments monitored exchange of ATP analog by ATP and phosphorylation to the first phosphoenzyme intermediate Ca2E1P. These reactions were triggered by the release of ATP from caged ATP. Only small differences in infrared absorption were observed between the ATP complex and the complexes with AMPPCP and AMPPNP indicating that overall the interactions between nucleotide and ATPase are similar and that all complexes adopt a closed conformation. The spectral differences between ATP and AMPPCP complex were more pronounced at high Ca2+ concentration (10 mM). They are likely due to a different position of the γ-phosphate which affects the β-sheet in the P domain.  相似文献   

7.
The Escherichia coli ClpA protein is a molecular chaperone that binds and translocates protein substrates into the proteolytic cavity of the tetradecameric serine protease ClpP. In the absence of ClpP, ClpA can remodel protein complexes. In order for ClpA to bind protein substrates targeted for removal or remodeling, ClpA requires nucleoside triphosphate binding to first assemble into a hexamer. Here we report the assembly properties of ClpA in the presence of the nucleoside diphosphates and triphosphates ADP, adenosine 5′-[γ-thio]triphosphate, adenosine 5′-(β,γ-imido)triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and adenosine diphosphate beryllium fluoride. In addition to examining the assembly of ClpA in the presence of various nucleotides and nucleotide analogues, we have also correlated the assembly state of ClpA in the presence of these nucleotides with both polypeptide binding activity and enzymatic activity, specifically ClpA-catalyzed polypeptide translocation. Here we show that all of the selected nucleotides, including ADP, promote the assembly of ClpA. However, only adenosine 5′-[γ-thio]triphosphate and adenosine 5′-(β,γ-imido)triphosphate promote the formation of an oligomer of ClpA that is active in polypeptide binding and translocation. These results suggest that the presence of γ phosphate may serve to switch ClpA into a conformational state with high peptide binding activity, whereas affinity is severely attenuated when ADP is bound.  相似文献   

8.
The effect of extracellular ATP was studied in PC12 cells, a neurosecretory line that releases ATP. The addition of micromolar concentrations of ATP to PC12 cells evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), as measured with the Ca2+-dye fura 2. AMP and adenosine were without effect, ruling out the involvement of P1 receptors in mediating this response. The increase in [Ca2+]i was reduced in calcium-free media and virtually eliminated by the addition of EGTA, suggesting that calcium influx was the primary response initiated by extracellular ATP. Nucleotide triphosphates such as UTP and, to a lesser degree, ITP also evoked an increase in [Ca2+]i while GTP and CTP had little effect. In order to identify the receptor subtype mediating this response, the efficacy of ATP and ATP cogeners was assessed. The rank order potency was ATP > adenosine 5′-[γ-thio]triphosphate > ADP > 2-methylthioadenosine triphosphate (2-MeSATP) ~ adenosine 5′-[β-thio]diphosphate ? adenosine 5′-[αβ-methylene] triphosphate, adenosine 5′-[βγ-imido]triphosphate. This profile is not characteristic of either the P2X or the conventional P2Y receptors. The Ca2+ response exhibited desensitization to ATP that was dependent on the extracellular metabolism of ATP. UTP was equally effective in desensitizing the response. ATP, UTP, ITP, and to a much lesser extent 2MeSATP increased inositol phosphate production in a dose-dependent manner, suggesting receptor coupling to phosphatidylinositol-specific phospholipase C. These data are consistent with the view that PC12 cells express a class of non-P2Y nucleotide receptors (P2N) that mediate calcium influx and the accumulation of inositol phosphates. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Arnost Horak  Saul Zalik 《BBA》1976,430(1):135-144
Spinach chloroplasts were able to photophosphorylate the ADP analog α,β-methylene adenosine 5′-diphosphate (AOPCP). Phosphorylation of AOPCP was catalyzed by chloroplasts that were washed or dialyzed to remove free endogenous nucleotides. In the presence of glucose, hexokinase, AOPCP and 32Pi, the 32P label was incorporated into α,β-methylene adenosine 5′-triphosphate (AOPCPOP).In contrast to photophosphorylation of AOPCP, the ATP analog AOPCPOP was a poor substrate for the ATP-Pi exchange reaction and its hydrolysis was neither stimulated by light and dithiothreitol nor inhibited by Dio-9.Photophosphorylation of AOPCP was inhibited by the α,β- and β,γ-substituted methylene analogs of ATP, while phosphorylation of ADP was unaffected by them. The ATP-Pi exchange was also unaffected by both ATP analogs, while the weak AOPCPOP-Pi exchange was inhibited by the β,γ-methylene analog of ATP.Direct interaction of methylene analogs with the chloroplast coupling factor ATPase was indicated by the enzymatic hydrolysis of AOPCPOP on polyacrylamide gels.  相似文献   

10.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   

11.
Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity   总被引:22,自引:0,他引:22  
Rabbit muscle phosphorylase b (EC 2.4.1.1) is converted to a thio-analog of phosphorylase a by phosphorylase kinase, Mg2+ and adenosine 5′-O(3-thiotriphosphate)(ATPγS). Conversion proceeds at one-fifth the rate obtained with ATP though the extent of reaction and final level of activation of the enzyme are the same. However, the thiophosphorylase a produced is resistant to phosphorylase phosphatase and, therefore, behaves as a competitive inhibitor with a KI of 3 μM, similar to the KM obtained with normal phosphorylase a. ATPγS can also be utilized by protein kinase in the activation of phosphorylase kinase at a rate similar to that obtained with ATP. It is hydrolyzed at 5 to 10 times the normal rate by the sarcoplasmic reticulum ATPase. When added to a muscle glycogen-particulate complex in the presence of Ca2+ and Mg2+, ATPγS triggers an activation of phosphorylase with simultaneous inhibition of phosphorylase phosphatase as previously observed with ATP.  相似文献   

12.
Thiophosphate analogs of ADP and ATP have been employed in partial reactions of photosynthetic energy conversion in chloroplasts. Substitution of oxygen by sulfur at the α-phosphate yields a pair of diastereomers (ADPαS, ATPαS, A and B forms). Two diastereomeric compounds are also obtained by replacement of oxygen by sulfur in the β-phosphate group of ATP (ATPβS, A and B form) (Eckstein, F. and Goody, R.S. (1976) Biochemistry 15, 1685–1691).The A form of ADPαS is phosphorylated by chloroplasts with a Km comparable to that of ADP but with a lower V. The B form of ADPαS as well as ADPβS is not a substrate in photophosphorylation and only weakly competes with ADP.The A forms of ADPαS and ATPαS strongly compete with ADP for the tight nucleotide binding site of CF1 in the light-induced exchange reaction, whereas the B forms display a much smaller competitive effect. The efficiencies of ADPβS and the A isomer of ATPβS are intermediate, and the B form of ATPβS is a weaker competitor.The A forms of ATPαS and ATPβS are hydrolyzed by light-triggered ATPase, whereas the B forms are not. The efficiency of the A isomer of ATPαS is comparable to that of normal ATP, and the A form of ATPβS is cleaved at a lower rate. In trypsin-activated Ca2+-dependent ATPase the A form of ATPαS is the only thiophosphate analog to be hydrolyzed.The results indicate a stereospecific interaction of ADP and ATP at the catalytic sites as well as the tight nucleotide binding site of coupling ATPase of chloroplasts.  相似文献   

13.
Various analogs of adenosine 5′-triphosphate with a modified terminal phosphate group have been tested in energy-requiring reactions with intact mitochondria and submitochondrial particles.It is shown that the fluorophosphate analog ATP(γF) is a strong inhibitor of mitochondrial respiration and of energy requiring reactions which involve the participation of high energy intermediates, generated aerobically by the respiratory chain. On the other hand, ATP(γF) does not affect the ATPase activity of intact or disrupted mitochondria and is less effective in inhibiting ATP-driven reactions.The imidophosphate analog AMP-P(NH)P also inhibits the partial reactions of oxidative phosphorylation, but does not affect ATP synthesis from ADP and Pi. In contrast to ATP(γF), it is a strong inhibitor of both soluble and membrane-bound mitochondrial ATPases.The biological implication of the complementary effects of ATP(γF) and AMP-P(NH)P on mitochondria-catalysed reactions is discussed while suggesting the use of such nucleotide analogs as specific tools for the study of ATP-forming and ATP-utilizing reactions in mitochondria.  相似文献   

14.
Neuroendocrine-type KATP channels, (SUR1/Kir6.2)4, couple the transmembrane flux of K+, and thus membrane potential, with cellular metabolism in various cell types including insulin-secreting β-cells. Mutant channels with reduced activity are a cause of congenital hyperinsulinism, whereas hyperactive channels are a cause of neonatal diabetes. A current regulatory model proposes that ATP hydrolysis is required to switch SUR1 into post-hydrolytic conformations able to antagonize the inhibitory action of nucleotide binding at the Kir6.2 pore, thus coupling enzymatic and channel activities. Alterations in SUR1 ATPase activity are proposed to contribute to neonatal diabetes and type 2 diabetes risk. The regulatory model is partly based on the reduced ability of ATP analogs such as adenosine 5′-(β,γ-imino)triphosphate (AMP-PNP) and adenosine 5′-O-(thiotriphosphate) (ATPγS) to stimulate channel activity, presumably by reducing hydrolysis. This study uses a substitution at the catalytic glutamate, SUR1E1507Q, with a significantly increased affinity for ATP, to probe the action of these ATP analogs on conformational switching. ATPγS, a slowly hydrolyzable analog, switches SUR1 conformations, albeit with reduced affinity. Nonhydrolyzable AMP-PNP and adenosine 5′-(β,γ-methylenetriphosphate) (AMP-PCP) alone fail to switch SUR1, but do reverse ATP-induced switching. AMP-PCP displaces 8-azido-[32P]ATP from the noncanonical NBD1 of SUR1. This is consistent with structural data on an asymmetric bacterial ABC protein that shows that AMP-PNP binds selectively to the noncanonical NBD to prevent conformational switching. The results imply that MgAMP-PNP and MgAMP-PCP (AMP-PxP) fail to activate KATP channels because they do not support NBD dimerization and conformational switching, rather than by limiting enzymatic activity.  相似文献   

15.
Vitamin B12-dependent ribonucleotide reductase purified from Rhizobium meliloti catalyzes the reduction of 5′-diphosphates of guanosine, adenosine, cytidine and uridine (GDP, ADP, CDP and UDP). The enzyme activities were regulated by Mg2+ and deoxyribonucleoside triphosphate effectors as follows: in the presence of Mg2+, allosteric effector deoxyguanosine triphosphate (dGTP) had the most stimulatory effect on reduction of ADP and UDP; deoxyadenosine triphosphate (dATP) on reduction of CDP; and thymidine triphosphate (dTTP) on reduction of GDP. These stimulatory effectors were active at a low concentration of 10 μm. Other deoxyribonucleotides may be negative or weakly positive effectors. Without effectors, the rate profile of ADP and GDP reduction showed a sigmoidal curve. In the absence of Mg2+, the activities of the reductase showed nearly maximal levels, and the addition of effectors rather decreased the activities, except in the case of UDP reduction which was most strongly stimulated by dGTP. The effect of Mg2+ can be replaced by Ca2+. Monovalent cations such as Na+ and K+ had a negligible effect on the activities of ribonucleotide reductase.  相似文献   

16.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

17.
The crystal structures of the nucleotide-empty (AE), 5′-adenylyl-β,γ-imidodiphosphate (APNP)-bound, and ADP (ADP)-bound forms of the catalytic A subunit of the energy producer A1AO ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 Å and 2.4 Å resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the AE form, the phosphate analog SO42− binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5′-adenylyl-β,γ-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-Å structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic β subunits of F1FO ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A1AO ATP synthases, F1FO ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.  相似文献   

18.
Nucleotide binding properties of two vacant noncatalytic sites of thioredoxin-activated chloroplast coupling factor 1 (CF1) were studied. Kinetics of nucleotide binding to noncatalytic sites is described by the first-order equation that allows for two nucleotide binding sites that differ in kinetic features. Dependence of the nucleotide binding rate on nucleotide concentration suggests that tight nucleotide binding is preceded by rapid reversible binding of nucleotides. ADP binding is cooperative. The preincubation of CF1 with Mg2+ produces only slight effect on the rate of ADP binding and decreases the ATP binding rate. The ATP and ADP dissociation from noncatalytic sites is described by the first-order equation for similar sites with dissociation rate constants k−2(ADP)=1.5×10−1 min−1 and k−2(ATP)≅10−3 min−1, respectively. As follows from the study, the noncatalytic sites of CF1 are not homogeneous. One of them retains the major part of endogenous ADP after CF1 precipitation with ammonium sulfate. Its other two sites can bind both ADP and ATP but have different kinetic parameters and different affinity for nucleotides.  相似文献   

19.
Aurovertin forms a complex with soluble beef heart mitochondrial ATPase (F1) while exhibiting a biphasic fluorence enhancement. The effect of substrate, activators and inhibitors of F11 of the fluorescence of the aurovertin-F1 complex is reported. The aurovertin-F1 complex can exist in two different states, one showing low fluorescence and the other with high fluorescence. Transition into the low fluorescence state is induced by various nucleoside triphosphates (ATP ± Mg2+, ITP ± Mg2+, GIP + Gg2+, and AMP-P(NH)P ± Mg2+). The rate and extent of fluorescence decrease caused by nucleotide addition (except that caused by ATP) is dependent on the presence of added Mg2+. The inhibitors of ATPase activity (AMP-P(NH)P, GMP-P(NH)P and EDTA) at concentrations that inhibit hydrolysis of ATP did not prevent the ATP induced decrease of aurovertin fluorescence. EDTA at high concentration (>0.4 mM) enhanced the effect of ADP.The complex of aurovertin with F1 that had previously been treated with butanedione loses sensitivity to ATP. Addition of ADP to the system containing butanedione-treated enzyme caused a 2-fold greater enhancement of fluorescence than the addition of ADP to the control system. In contrast to the butanedione-treated enzyme, the complex of aurovertin with F1 previously treated at pH 5.6 loses sensitivity to ADP. Addition of ATP to this system lowered the fluorescence as in the system containing native enzyme.On the basis of the analyses of the aurovertin fluorescence changes and hydrolytic activity of F1, the existence of several types of ligand binding sties with varying degrees of specificity are proposed. It is further proposed that these sites are important in control of the conformation and the catalytic properties of the ATPase molecule.  相似文献   

20.
Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using 31P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in βATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and β signals and the increase of Pi. Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and β ATP signals, in conjunction with a decrease in Pi, which is being used for ATP synthesis. Polarographic studies showed Mg2+ dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with 31P NMR spectroscopy. Copyright © 2015 John Wiley & Sons, Ltd. SIGNIFICANCE OF RESEARCH PARAGRAPH The data generated in the present study indicate that 31P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with 31P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, 31P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and pathophysiological conditions, including but not exclusive of, cancer, ischemic injury, hemolytic anemia and neurological problems such as sensorineural deafness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号