首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isolated perfused rat liver was used to study the degradation of 125I-labelled protein supplied in the perfusion medium. Formaldehyde-denatured proteins (human serum albumin, bovine serum albumin and especially rat liver phosphoenolpyruvate carboxykinase (GTP)) were taken up by the liver and degraded at high rates. Native human serum albumin was not degraded at significant rates by the perfused liver, while native phosphoenolpyruvate carboxykinase (GTP) was catabolised at about one-fourth the rate of the denatured enzyme. The degradation rate of denatured human serum albumin increased markedly as protein was added up to 0.7 mg, and more gradually with further increases in added protein. The biphasic nature of concentration dependence probably reflects the contribution of different cell types in the liver. Autoradiographic examination of serial biopsies taken during perfusion of the liver with formaldehyde-denatured, 125I-labelled bovine serum albumin showed that at the cellular level the radioactivity was located predominantly in Kupffer and other non-parenchymal cells; and at the subcellular level the radioactivity was largely in endocytic vesicles, lysosomes and occasionally in the sinusoidal spaces. No significant radioactivity was found associated with other cytoplasmic organelles or the nucleus. It is concluded that lysosomes of the non-parenchymal cells are primarily responsible for the degradation of denatured extracellular protein that enters the liver.  相似文献   

2.
The interaction of streptavidin with various cell systems was studied using fluorescent derivatives of the protein. The native unprocessed form of streptavidin bound to cells at low levels and in a nonspecific manner. In contrast, both the truncated "core" streptavidin (the commercially available form) and the biotin-blocked unprocessed protein bound to cells in enhanced levels and in a specific, saturable manner. This suggests that the binding of biotin or cleavage of the terminal portion(s) of the native protein molecule causes conformational changes which lead to the exposure of sites which presumably interact with cell surface receptors. Peptide inhibition studies demonstrated that the majority of binding to cells appears to be dependent on RGD-like specificity, suggesting that the GRYDS sequence of the streptavidin molecule may exhibit such specificity. Indirect immunofluorescence assays revealed that the protein is associated mainly with the cell surface. Moreover, streptavidin was demonstrated to compete with specific monoclonal antibodies to the RGD-binding site on the GpIIbIIIa integrin of activated platelets, thus suggesting that streptavidin may facilitate binding to ubiquitous cell-surface adhesion receptors via RGD mimicry.  相似文献   

3.
When treated with formaldehyde, serum albumin is known to be taken up and degraded by sinusoidal liver cells via adsorptive endocytosis. The present study aimed at characterization and identification of the membrane-associated receptor on rat sinusoidal liver cells. Kinetic studies of binding of 125I-labeled formaldehyde-treated serum albumin (125I-f-Alb) with the membranes of sinusoidal liver cells demonstrated the presence of specific, high-affinity, saturable membrane-bound receptors with an apparent Kd = 8 micrograms of f-Alb/ml and the optimal pH at around 8.0. The 125I-f-Alb binding to the membranes was not inhibited by either native albumin, asialofetuin, methylamine-treated alpha 2-macroglobulin, mannan, or immune complexes. The binding process exhibited independence of calcium and susceptibility both to heat treatment and to destruction by proteases. The binding was inhibited by concanavalin A and the inhibition was effectively reversed by the presence of alpha-methyl-D-glucoside, a haptenic inhibitor for this lectin, indicating the glycoprotein nature of the receptor. The binding protein was extracted from the membrane preparations with octyl beta-D-glucopyranoside and immunoprecipitated by anti-ligand antibody as a complex with the ligand. Sodium dodecyl sulfate-gel electrophoresis of the immunoprecipitate revealed two polypeptide chains with molecular weights of approximately 53,000 and 30,000, respectively.  相似文献   

4.
UHF-dielectrometry method is based on the following facts: i) there is dispersion (i.e. dependence on frequency) of the dielectric permeability epsilon; ii) bound and free water have remarkable different epsilon, mobility and dispersion regions; iii) conformational changes in a macromolecule lead to redistribution of free and bound water and to change of the amount of free water molecules. Choosing the working frequency in the region of dispersion of free water molecules (9.2 GHz) we can detect conformational changes in proteins using free water as a marker. In this work the temperature dependencies of dielectric parameters of albumin and fibrinogen solutions were obtained in the temperature interval 5-40 degrees C. In contrast to dependencies for poor solvent, temperature dependencies of dielectric parameters for protein solutions are of non-monotonous character; they have a number of peculiarities in the temperature ranges of 8-10, 22-24 and 34-36 degrees C. At these temperatures redistribution of free and bound water in protein-water system occurs due to structural changes in protein molecules. In this work the mechanism of temperature changes of spatial organisation of protein molecules was proposed. Perhaps, this mechanism is responsible for maintenance of thermal stability of the functionally active conformation of native proteins.  相似文献   

5.
Albumin binding to the endothelial surface apparently initiates its transcytosis via plasmalemmal vesicles and also increases capillary permselectivity. Several albumin-binding proteins, which, we call gp60, gp30, and gp18, have been identified; however, their functional relationship to each other is unclear. In this study, we show that gp30 and gp18 are both variably expressed by cultured rat fibroblasts, smooth muscle cells, and endothelial cells and are present in all tissues examined (heart, lung, skeletal muscle, diaphragm, duodenum, kidney, fat, brain, adrenal, pancreas, and liver). The binding of albumin-gold complexes (A-Au) to gp30 and gp18 was compared with that of native and modified albumins. Monomeric native bovine serum albumin (BSA) interacted much less avidly than A-Au and BSA that was chemically modified by formaldehyde (Fm-BSA) or maleic anhydride (Mal-BSA). Mal-BSA and A-Au have similar affinity constants for gp30 and gp18 (KD approximately 3-7 micrograms/ml (50-100 nM)), which is 1000-fold greater than BSA. These interactions were Ca(2+)-independent but sensitive to pH (< 6.0) and high salt concentrations (> or = 1.0 M). Comparative biochemical characterization provided evidence of conformational changes for Mal-BSA, Fm-BSA, and A-Au. Anti-native BSA serum recognizes BSA much more avidly than modified BSA. Mal-BSA, Fm-BSA, and A-Au are much more sensitive to trypsin digestion than BSA. Cellular processing was also examined. A-Au and Mal-BSA bound at the endothelial cell surface were degraded, whereas BSA was not. Our results indicate that: (i) gp30 and gp18, unlike gp60, are expressed in all tissues tested regardless of the type of endothelia lining the microvasculature and the local mechanism of transendothelial albumin transport; (ii) BSA conformationally modified by either surface adsorption or chemical means not only interacts more avidly with gp30 and gp18 than native albumin but also is preferentially degraded by the cells; (iii) A-Au and native albumin are not equivalent probes for detecting albumin interaction sites; and (iv) gp30 and gp18 exhibit binding behavior resembling scavenger receptors. The possible roles of gp30 and gp18 in albumin binding, transcytosis, endocytosis, and even protein catabolism are discussed.  相似文献   

6.
Summary To elucidate the participation of fetal rat liver cells in the receptor-mediated internalization of low-density lipoproteins (LDL), rat fetuses were injected with either LDL-gold or albumin-gold conjugates. The degree of binding and uptake of LDL-gold and albumin-gold by parenchymal and sinusoidal cells of the fetal rat liver differs markedly. Endothelial cells exhibit low LDL-gold uptake. In contrast, parenchymal cells internalize LDL-gold more actively (45 ± 8 LDL conjugates/100 m2 cytoplasm within 60 min). Kupffer cells exceed this value by a factor of 20. The uptake of albumin-gold by endothelial and Kupffer cells is high, whereas it is extremely low in parenchymal cells. Estradiol pretreatment causes a significant doubling (p<0.05) of the LDL-gold particle density/100 m2 cytoplasm both in parenchymal and Kupffer cells, whereas estradiol has no effect on the albumin uptake. The results strongly indicate that LDL uptake by parenchymal and Kupffer cells in the fetal rat liver is mediated by estrogen-inducible receptors, which may correspond to B, E receptors in the adult liver.  相似文献   

7.
Human serum albumin (HSA) binding with endogenous metabolites and drugs is substantially decreased in chronic renal and liver diseases. To test the hypothesis that the decreased binding ability is caused by conformational changes of the protein, we analyzed infrared and Raman spectra of HSA isolated from healthy donors and patients with chronic uremia and liver cirrhosis. Uremia did not affect the secondary structure of HSA but modified the environment of its Asp/Glu residues. Liver cirrhosis increased the amount of extended and beta-structures, modified the environment of Asp/Glu and Tyr side chains, and changed the configuration of disulfide bridges in albumin molecules. The conformational changes of "cirrhotic" albumin were not caused by reversibly bound ligands and resembled a partial unfolding of the protein induced by adsorption on the charcoal surface. The dramatic structural alterations of HSA in liver cirrhosis may be caused by its oxidative modification and might underlie the decreased binding ability and changed body distribution of albumin.  相似文献   

8.
To characterize a previously proposed hepatocyte albumin receptor, we examined the binding of native and defatted 125I-labeled rat albumin to rat liver plasma membranes. After incubation for 30 min, binding was determined from the distribution of radioactivity between membrane pellet and supernatant following initial centrifugation (15 000 × g for 15 min), after repeated cycles of washing with buffer and re-centrifugation. 125I-labeled albumin recovered in the initial membrane pellet averaged only 4% of that incubated. Moreover, this albumin was only loosely associated with the membrane, as indicated by recovery in the pellet of under 0.5% of the counts after three washes. Binding of 125I-labeled albumin to the plasma membranes was no greater than to erythrocyte ghosts, was not inhibited by excess unlabeled albumin, and was not decreased by heat denaturation of the membranes, all suggestive of a lack of specific binding. Failure to observe albumin binding to the membranes was not due to a rapid dissociation rate or ‘off-time’, as incubations in the presence of sufficient ultraviolet light to promote covalent binding of ligands to receptors did not increase 125I counts bound to the membrane. Finally, affinity chromatography over albumin/agarose gel of solubilized membrane proteins provided no evidence of a membrane protein with a high affinity for albumin. These studies, therefore, do not support the hypothesis that liver cell plasma membranes contain a specific albumin receptor.  相似文献   

9.
A comparative biochemical and radioautographic in vivo study was performed to identify the site of synthesis and route of migration of albumin in the parenchymal liver cell after labeling with leucine-14C or leucine-3H via the portal vein. Free cytoplasmic ribosomes, membrane-bound ribosomes, rough- and smooth-surfaced microsomes, and Golgi membranes were isolated. The purity of the Golgi fraction was examined morphologically and biochemically. After administration of leucine-14C, labeled albumin was extracted, and the sequence of transport was followed from one fraction to the other. Approximately 2 min after the intravenous injection, bound ribosomes displayed a maximal rate of leucine-14C incorporation into albumin. 4 min later, a peak was reached for rough microsomes. Corresponding maximal activities for smooth microsomes were recorded at 15 min, and for the Golgi apparatus at ~20 min. The relative amount of albumin, calculated on a membrane protein basis, was higher in the Golgi fraction than in the microsomes. By radioautography the silver grains were preferentially localized over the rough-surfaced endoplasmic reticulum at the 5 min interval. Apparent activity in the Golgi zone was noted 9 min after the injection; at 15 and 20 min, the majority of the grains were found in this location. Many of the grains associated with the Golgi apparatus were located over Golgi vacuoles containing 300–800 A electron-opaque bodies. It is concluded that albumin is synthesized on bound ribosomes, subsequently is transferred to the cavities of rough-surfaced endoplasmic reticulum, and then undergoes migration to the smooth-surfaced endoplasmic reticulum and the Golgi apparatus. In the latter organelle, albumin can be expected to be segregated together with very low density lipoprotein in vacuoles known to move toward the sinusoidal portion of the cell and release their content to the blood.  相似文献   

10.
We have tested whether mannose- and galactose-specific lectins on liver cells are able to bind antibody-antigen complexes and thus function as Fc-receptors. Rat hepatocytes and liver sinusoidal cells were isolated by collagenase perfusion and differential centrifugation. Rat erythrocytes were coated with purified IgM or IgG from rabbits immunized with rat erythrocytes. Both IgM and IgG coated erythrocytes bound to liver macrophages but not to hepatocytes. The binding of IgM and IgG coated red blood cells to liver macrophages could not be blocked by potent inhibitors for mannose- and galactose-specific macrophage lectins such as mannan, D-mannose-bovine serum albumin, N-acetyl-D-galactosamine, D-galactose-bovine serum albumin, or asialofetuin. Although lectin activity is calcium dependent and trypsin sensitive neither condition blocked rosette formation between liver macrophages and opsonized erythrocytes. Thus mannose- and galactose-specific lectins are not involved in the sequestration of IgM- or IgG-antibody-erythrocyte complexes in the liver.  相似文献   

11.
The concentrations of free and total (free plus albumin bound) tryptophan were measured in plasma of blood taken from the portal vein, hepatic vein and abdominal aorta of male rats, fed, and starved for one and three days. Liver and brain tryptophan concentrations were measured in similar groups of rats.On starvation, there was an increase in arterial plasma free tryptophan concentration which took place peripherally and was paralleled by an increase in brain tryptophan. In both the fed and starved rats, the portal vein concentrations of free tryptophan were high and as the blood flowed through the liver they were reduced to relatively low levels not directly related to the arterial values. All these changes were due to alterations in degree of binding of tryptophan to plasma albumin.The measurements of plasma total tryptophan concentrations showed that postabsorptively and during starvation there was a net uptake of tryptophan by the peripheral tissues (which included brain), but no overall fall in plasma concentration. At the same time, there was a net release from the liver, and to a lesser extent from the portal-drained tissues. The released tryptophan largely entered the albumin bound plasma pool. Accompanying the hepatic output was a fall in tryptophan concentration in the liver which was apparently caused by altered cell membrane transport.The results suggest (1) that the liver protects the brain from the high free tryptophan level in portal blood, (2) that the availability of tryptophan to the brain is maintained postabsorptively and during starvation by hepatic output into the albumin bound pool and (3) that this release of tryptophan from the liver and the fall in intracellular tryptophan concentration are initiated by altered membrane transport. The pattern of changes is consistent with a role for tryptophan in the mediation of changes in liver protein synthesis and gluconeogenesis and cerebral serotonin turnover on starvation.  相似文献   

12.
Interaction of uncoupling reagents with bovine serum albumin markedly inhibited its hydrolysis by proteolytic enzymes. The inhibition presumably is due to conformational transitions in the protein substrate induced by the binding of the ligand-uncoupling reagents. The proteolysis of casein, a protein that does not bind these reagents, was not affected, indicating that the proteinases themselves were not inactivated. In contrast, interaction of uncoupling reagents with freshly isolated rat liver mitochondria enhanced their susceptibility to proteolytic enzymes. This was shown by an increase in the release of ninhydrin-reacting material, by an increase in free acid groups and by a decrease in the turbidity of the mitochondrial suspensions. These effects, although opposite in direction to those obtained with albumin, are also presumed to indicate structural changes in the mitochondrial proteins and a disorganization of the protein-phospholipid complex. It is suggested that such structural alterations are expressed functionally as the uncoupling of oxidative phosphorylation.  相似文献   

13.
Oxidatively- or enzymatically-modified low-density lipoprotein (LDL) is intimately involved in the initiation and progression of atherosclerosis. The in vivo modified LDL is electro-negative (LDL) and consists of peroxidized lipid and unfolded apoB-100 protein. This study was aimed at establishing specific protein modifications and conformational changes in LDL assessed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and circular dichroism analyses, respectively. The functional significance of these chemical modifications and structural changes were validated with binding and uptake experiments to- and by bovine aortic endothelial cells (BAEC).The plasma LDL fraction showed increased nitrotyrosine and lipid peroxide content as well as a greater cysteine oxidation as compared with native- and total-LDL. LC/MS/MS analyses of LDL revealed specific modifications in the apoB-100 moiety, largely involving nitration of tyrosines in the α-helical structures and β2 sheet as well as cysteine oxidation to cysteic acid in β1 sheet. Circular dichroism analyses showed that the α-helical content of LDL was substantially lower (∼25%) than that of native LDL (∼90%); conversely, LDL showed greater content of β-sheet and random coil structure, in agreement with unfolding of the protein. These results were mimicked by treatment of LDL subfractions with peroxynitrite (ONOO) or SIN-1: similar amino acid modifications as well as conformational changes (loss of α-helical structure and gain in β-sheet structure) were observed. Both LDL and ONOO-treated LDL showed a statistically significant increase in binding and uptake to- and by BAEC compared to native LDL. We further found that most binding and uptake in control-LDL was through LDL-R with minimal oxLDL-R-dependent uptake. ONOO-treated LDL was significantly bound and endocytosed by LOX-1, CD36, and SR-A with minimal contribution from LDL-R.It is suggested that lipid peroxidation and protein nitration may account for the mechanisms leading to apoB-100 protein unfolding and consequential increase in modified LDL binding and uptake to and by endothelial cells that is dependent on oxLDL scavenger receptors.  相似文献   

14.
The kinetics of haem binding to human serum albumin and haemopexin were studied by means of the stopped flow technique. The reaction could be divided into three kinetically clearly distinguished steps: (1) extremely fast reaction of haem with nonspecific binding sites on the surface of the apoprotein molecule; this type of haem binding site seems to exist in proteins in general; (2) by meaas of equilibrium with its monomer, haem is transferred to the specific binding site; this second order reaction takes about 1–2 s, the reaction rate constant amounts to ≈106 l mol?1 s?1 both for albumin and haemopexin: (3) conformational changes of haemoprotein molecule, accompanied by changes of absorption spectra in the Soret region; this series of slow monomolecular reactions takes about 20 min. These results are discussed in connection with the mechanism of haem transport from blood to liver cells.  相似文献   

15.
Bone marrow sinusoidal endothelial cells have a specific function as a site of transmigration of hematopoietic stem and progenitor cells and mature blood cells between bone marrow and blood stream. However, the specific characteristics of bone marrow sinusoidal endothelial cells are still largely unclear. We here report that these cells express stabilin-1 and stabilin-2, which in liver sinusoidal endothelial cells have been identified as endocytic scavenger receptors for several ligands, including SPARC and hyaluronan. We show here that intravenously injected formaldehyde-treated serum albumin, advanced glycation end-products, and collagen I α-chains were taken up by bone marrow sinusoidal endothelial cells, showing that these cells have a scavenging function and thereby may modulate bone marrow vascular stem cell niches. Importantly, we show hyaluronan mediated adhesion of hematopoietic stem and progenitor cells to stabilin-2-transfected cells, suggesting that stabilin-2 contributes to adhesion and homing of circulating stem and progenitor cells to bone marrow.  相似文献   

16.
The binding of oleic acid to human serum albumin causes progressive changes in (a) the pK of some amino acid residues, as detected by pH-stat titration and (b) the induced molar ellipticities of albumin-bound drugs (diazepam and oxyphenbutazone), as measured by c.d. It is concluded that albumin undergoes several conformational transitions as the amount of oleic acid bound increases from 0 to about 9 molecules/molecule of protein. At least three different conformations of the protein seem to be involved. These conformations can be linked with the three classes of oleic acid-binding sites on albumin.  相似文献   

17.
We had hypothesized that preclustered arrangement of galactose-specific receptor activity on rat liver macrophages enables these cells to internalize multivalent, particulate ligands in contrast to the clearance of molecules mediated by statistically distributed receptors on hepatocytes. We now took advantage of the nonclustered receptor distribution in newborn rat liver macrophages to study the in vivo clearance of particulate ligands. Gold particles 5, 17, and 50 nm in diameter (Au5, Au17, Au50), coated with lactosylated bovine serum albumin (LacBSA), were injected into the vena cava and livers were perfusion fixed after allowing for binding and uptake for 3 min. In sinusoidal cells from rats 15 days old LacBSA-Au5 and LacBSA-Au17 were taken up by endothelial cells and all sizes by liver macrophages. In newborn rat liver no LacBSA-Au50 or LacBSA-Au17 was retained in liver macrophages. Uptake of LacBSA-Au5 by sinusoidal cells was significant. LacBSA-Au17 was taken up in significant amounts by endothelial cells of newborn rats which correlates to the findings that galactose-specific binding sites on endothelial cells were found to localize as clusters over coated pits irrespective of age. These results demonstrate the crucial role of clustered receptors in binding and uptake of larger particulate ligands via this lectin-like binding activity.  相似文献   

18.
Chemically modified proteins such as acetylated low-density lipoprotein (acetyl-LDL) and formaldehyde-treated serum albumin (f-Alb) infused intravenously are known to undergo receptor-mediated endocytosis by sinusoidal liver cells, major intravascular scavenger cells in vivo. The aim of the present study was to elucidate whether the endocytic uptake of acetyl-LDL and f-Alb is mediated by the same receptor or not. Experiments on the binding of 125I-acetyl-LDL to isolated rat liver sinusoidal cells revealed the presence of a specific, high-affinity, saturable, membrane-associated receptor with an apparent Kd = 7 micrograms of the ligand at 0 degrees C. Unlabeled acetyl-LDL effectively inhibited 125I-f-Alb binding to the cells. By contrast, the binding of 125I-acetyl-LDL to the cells was affected neither by unlabeled f-Alb nor by the antibody raised against the f-Alb receptor. These results indicate that the scavenger receptors for these two ligands are distinct from each other but similarly sensitive to polyanionic compounds.  相似文献   

19.
The therapeutic activity of ricin A-chain immunotoxins is undermined by their rapid clearance from the bloodstream of animals by the liver. This uptake has generally been attributed to recognition of the mannose-terminating oligosaccharides present on ricin A-chain by receptors present on the non-parenchymal (Kupffer and sinusoidal) cells of the liver. However, we demonstrate here that, in the mouse, the liver uptake of a ricin A-chain immunotoxin occurs in both parenchymal and non-parenchymal cells in equal amounts. This is in contrast to the situation in the rat, where uptake of the immunotoxin is predominantly by the non-parenchymal cells. Recognition of sugar residues on the A-chain portion of the immunotoxin plays an important role in the liver uptake by both cell types in both species. However it is not the only mechanism since, firstly, an immunotoxin containing ricin A-chain which had been effectively deglycosylated with metaperiodate and cyanoborohydride was still trapped to a significant extent by hepatic non-parenchymal cells after it was injected into mice. Secondly, deglycosylation, while eliminating uptake of the free A-chain by parenchymal and non-parenchymal cells in vitro, only reduced the uptake of an immunotoxin by either cell type by about half. Thirdly, the addition of excess D-mannose or L-fucose inhibited the uptake of free A-chain by mouse liver cell cultures by more than 80% but only inhibited the uptake of the native A-chain immunotoxin by about half and had little effect on the uptake of the deglycosylated ricin A-chain immunotoxin. Recognition of the antibody portion of the immunotoxin by liver cells seems improbable, since antibody alone or an antibody-bovine serum albumin conjugate were not taken up in appreciable amounts by the cultures. Possibly attachment of the A-chain to the antibody exposes sites on the A-chain that are recognised by liver cells in vitro and in vivo.  相似文献   

20.
The concentrations of transferrin and albumin in the blood serum and microsomal fraction of the liver and the incorporation of [14C] leucine into the proteins were measured in rats which were fasted while exposed to ambient atmospheric pressure or to a pressure of one-half atmosphere. The rates of protein synthesis were estimated in a relative manner from the ratio of 14C incorporation into the two proteins and in an absolute manner using the liver free 14C and leucine concentrations to measure the specific activity of the precursor pool. Fasting at ambient pressure was accompanied by a decrease in the serum and microsomal concentrations of transferrin but not of albumin and by a marked decrease in the relative and absolute synthesis rates of transferrin. By contrast, fasting at reduced ambient pressure was associated with an increase in the serum transferrin concentration and in the relative and absolute rates of synthesis of the protein. It is concluded that fasting in the rat produces a much greater decrease in the rate of synthesis of transferrin than of albumin and that exposure to reduced ambient pressure stimulates transferrin synthesis but not albumin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号