首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed.  相似文献   

2.
The reaction scheme of methionyl-tRNA synthetase from Escherichia coli with the initiator tRNAsMet from E. coli and rabbit liver, respectively, has been resolved. The statistical rate constants for the formation, kR, and for the dissociation, kD, of the 1:1 complex of these tRNAs with the dimeric enzyme have been calculated. Identical kR values of 250 μm?1 s?1 reflect similar behaviour for antico-operative binding of both tRNAsMet to native methionyl-tRNA synthetase. Advantage was taken of the difference in extent of tryptophan fluorescence-quenching induced by the bacterial and mammalian initiator tRNAsMet to measure the mode of exchange of these tRNAs antico-operatively bound to the enzyme. Analysis of the results reveals that antico-operativity does not arise from structural asymmetric assembly of the enzyme subunits. Indeed, both subunits can potentially bind a tRNA molecule. Exchange between tRNA molecules can occur via a transient complex in which both sites are occupied. Either strong and weak sites reciprocate between subunits on the transient complex or occupation of the weak site induces symmetry of this complex. While in the present case, these two alternatives are kinetically indistinguishable, they do account for the observation that, upon increasing the concentration of the competing mammalian tRNA, the rate of exchange of the E. coli initiator tRNAMet is enhanced, due to its faster rate of dissociation from the transient complex. Finally, it has been verified that in the case of the trypsin-modified methionyl-tRNA synthetase which cannot provide more than one binding site for tRNA, exchange of enzymebound bacterial tRNA by mammalian tRNA does proceed to a limiting rate independent of the mammalian tRNA concentration present in the solution.  相似文献   

3.
Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs.  相似文献   

4.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

5.
Abstract: The biosynthesis of tRNA was investigated in cultured astroglial cells and the 3-day-old rat brain in vivo. In the culture system astrocytes were grown for 19 days and were then exposed to [3H]guanosine for 1.5–7.5 h; 3-day-old rats were injected with [3H]guanosine and were killed 5–45 min later. [3H]tRNA was extracted, partially purified, and hydrolyzed to yield [3H]-guanine and [3H]methyl guanines. The latter were separated from the former by high performance liquid chromatography and their radioactivity determined as a function of the time of exposure to [3H]guanosine. The findings indicate that labeling of astrocyte tRNA continued for 7.5 h and was maximal, relative to total RNA labeling, at 3 h, while in the immature brain tRNAs were maximally labeled at 20 min after [3H]guanosine administration. The labeling pattern of the individual methyl guanines differed considerably between astrocyte and brain tRNAs. Thus, [3H]1-methylguanine represented up to 35% of the total [3H]methyl guanine radioactivity in astrocyte [3H]tRNA, while it became only negligibly labeled in brain [3H]tRNA. Conversely, brain [3H]tRNA contained more [3H]N2-methylguanine than did astrocyte [3H]tRNA. Approximately equal proportions of [3H]7-methylguanine were found in the [3H]tRNAs of both neural systems. The [3H]methylguanine composition of brain [3H]tRNA was followed through several stages of tRNA purification, including benzoylated DEAE-cellulose and reverse phase chromatography (RPC-5), and differences were found between the [3H]methylguanine composition of RPC-5 fractions containing, respectively, tRNAlys and tRNAphe. The overall results of this study suggest that developing brain cells biosynthesize their particular complement of tRNAs actively and in a cell-specific manner, as attested by the significant differences in the labeling rates of their methylated guanines. The notion is advanced that cell-specific tRNA modifications may be a prerequisite for the successful synthesis of cell-specific neural proteins.  相似文献   

6.
Many nucleus-encoded mitochondrial enzymes differ in physical and chemical properties from analogous cytoplasmic enzymes, and it is therefore generally assumed that different genes encode analogous mitochondrial and cytoplasmic enzymes. However, our genetic studies show that for at least two different tRNA modifications, mutations in nuclear genes affect cytoplasmic as well as mitochondrial tRNAs. These studies utilize two yeast genes: TRM1 and TRM2. trm1 cells do not have the enzyme activity necessary to methylate guanosine to N2,N2-dimethylguanosine. trm2 is a new mutation that we describe here. trm2 cells are deficient in tRNA(uridine-5)methyltransferase, and hence contain tRNA lacking 5-methyluridine or ribothymidine. Other than lacking 5-methyluridine trm2 cells have no obvious physiological defect. These studies also show that the N2,N2-dimethylguanosine and 5-methyluridine modifications are not added to tRNA in an obligatory order, and that 5-methyluridine is not required for removal of intervening sequences from precursor tRNA.  相似文献   

7.
A method is presented for determining the extent of methylation of tRNAs synthesized in mammalian and bacterial cell systems and is based upon determining the distribution of radioactivity associated with the guanine constituents of total cellular tRNA preparations previously labeled with [2-14C]guanosine and with [methyl]-3H or -14C]methionine. Whereas labeling with guanosine provides a means of assessing the extent of methylation of the [2-14C]guanine residues incorporated into tRNA, methionine labeling provides a measure of the percentage of [methyl-3H or -14C]methylated constituents that are methylated guanines. Analyses such as the above reveal that the tRNA of KB cells acquires approximately three times as many methyl groups as that of E. coli B tRNA. Coupled with the knowledge that both mammalian and bacterial tRNA preparations contain an average of 24 guanine residues per molecule, the above analyses further reveal that 7.2 and 2.4 methyl groups are incorporated into each tRNA molecule synthesized in exponentially growing KB- and E. coli B-cells, respectively. Additional information regarding the extent of formation of individual methylated constituents per tRNA molecule synthesized is presented.  相似文献   

8.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   

9.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for the elongation step. We show, in vivo and in vitro, that the primary sequence feature that prevents the human initiator tRNA from acting in the elongation step is the nature of base pairs 50:64 and 51:63 in the TΨC stem of the initiator tRNA. Various considerations suggest that this is due to sequence-dependent perturbation of the sugar phosphate backbone in the TΨC stem of initiator tRNA, which most likely blocks binding of the elongation factor to the tRNA. Because the sequences of all vertebrate initiator tRNAs are identical, our findings with the human initiator tRNA are likely to be valid for all vertebrate systems. We have developed reporter systems that can be used to monitor, in mammalian cells, the activity in elongation of mutant human initiator tRNAs carrying anticodon sequence mutations from CAU to CCU (the C35 mutant) or to CUA (the U35A36 mutant). Combination of the anticodon sequence mutation with mutations in base pairs 50:64 and 51:63 yielded tRNAs that act as elongators in mammalian cells. Further mutation of the A1:U72 base pair, which is conserved in virtually all eukaryotic initiator tRNAs, to G1:C72 in the C35 mutant background yielded tRNAs that were even more active in elongation. In addition, in a rabbit reticulocyte in vitro protein-synthesizing system, a tRNA carrying the TΨC stem and the A1:U72-to-G1:C72 mutations was almost as active in elongation as the elongator methionine tRNA. The combination of mutant initiator tRNA with the CCU anticodon and the reporter system developed here provides the first example of missense suppression in mammalian cells.  相似文献   

10.
The major form of methionine tRNA operational in the elongation of protein synthesis in mouse myeloma cells was purufied from these cells after they had been cultured in the presence of [32P]-phosphate. This [32P]tRNA4-Met species was then digested with T1 RNase or pancreatic RNase so as to obtain both complete and partial RNase digestion products. The nucleotide sequences of these fragments were analysed to enable the derivation of the complete primary structure of this tRNA. tRNA4-Met of mouse myeloma cells is 76 nucleotides in length and contains 15 modified nucleotides. It is the only tRNA yet sequenced which has been found to possess the minor nucleoside 2-methylguanosine (m2G) within the amino acid (a) stem, and also to have an anticodon (c) stem of only 4 and not 5 base-pairs. The loop IV sequence of eukaryotic initiator methionine tRNA (tRNAf-Met) species, -A-U-C-G-m1A-A-A-, IS NOT FOUND IN TRNA4-Met and is therefore absent from at least one of the methionine tRNAs functioning in polypeptide elongation in mammalian cells. This is consistent with the suggested importance of this loop structure in the initiator function of tRNAf-Met in eukaryotic organisms. Three distinct regions of the tRNA cloverleaf, the (b) stem, the anticodon loop (loop II), and loop III, are substantially conserved in structure between tRNAf-Met and tRNA4-Met of mouse myeloma cells. These regions of the structures of mammalian methionine tRNAs probably do not determine whether a certain tRNA-Met will function in the initiation or elongation of protein synthesis, although they might be important in tRNA-Met recognition if the different cytoplasmic tRNA-Met species of mammalian cells are aminoacylated by a single activating enzyme.  相似文献   

11.
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.  相似文献   

12.
A transplantable rat tumor, mammary adenocarcinoma 13762, accumulates tRNA which can be methylated in vitro by mammalian tRNA (adenine-1) methyltransferase. This unusual ability of the tumor RNA to serve as substrate for a homologous tRNA methylating enzyme is correlated with unusually low levels of the A58-specific adenine-1 methyltransferase. The nature of the methyl-accepting RNA has been examined by separating tumor tRNA on two-dimensional polyacrylamide gels. Comparisons of ethidium bromide-stained gels of tumor vs. liver tRNA show no significant quantitative differences and no accumulation of novel tRNAs or precursor tRNAs in adenocarcinoma RNA. Two-dimensional separations of tumor RNA after in vitro [14C]methylation using purified adenine-1 methyltransferase indicate that about 25% of the tRNA species are strongly methyl-accepting RNAs. Identification of six of the tRNAs separated on two-dimensional gels has been carried out by hybridization of cloned tRNA genes to Northern blots. Three of these, tRNALys3, tRNAGln and tRNAMeti, are among the adenocarcinoma methyl-accepting RNAs. The other three RNAs, all of which are leucine-specific tRNAs, show no methyl-accepting properties. Our results suggest that low levels of a tRNA methyltransferase in the adenocarcinoma cause selected species of tRNA to escape the normal A58 methylation, resulting in the appearance of several mature tRNAs which are deficient in 1-methyladenine. The methyl-accepting tRNAs from the tumor appear as ethidium bromide-stained spots of similar intensity to those seen for RNA from rat liver; therefore, methyladenine deficiency does not seem to impair processing of these tRNAs.  相似文献   

13.
14.
An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N2-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m2G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNAArg, tRNAPhe, and tRNAVal yielded significantly more m2G than the bulk tRNA. The Km for tRNAArg in the methylation reaction with enzymes from either tissue was 7.8 × 10−7 M as compared to the value 1 × 10−5 M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNAArg, tRNAPhe, and tRNAVal, A-m2G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5′-end contained in a sequence (s4)U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.  相似文献   

15.
Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5′ terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from the 3′ end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence -TΨCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or Ψ)CG-as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56–60%) than to eucaryotic cytoplasmic initiator tRNAs (45–51%).  相似文献   

16.
The TRM5 gene encodes a tRNA (guanine-N1-)-methyltransferase (Trm5p) that methylates guanosine at position 37 (m(1)G37) in cytoplasmic tRNAs in Saccharomyces cerevisiae. Here we show that Trm5p is also responsible for m(1)G37 methylation of mitochondrial tRNAs. The TRM5 open reading frame encodes 499 amino acids containing four potential initiator codons within the first 48 codons. Full-length Trm5p, purified as a fusion protein with maltose-binding protein, exhibited robust methyltransferase activity with tRNA isolated from a Delta trm5 mutant strain, as well as with a synthetic mitochondrial initiator tRNA (tRNA(Met)(f)). Primer extension demonstrated that the site of methylation was guanosine 37 in both mitochondrial tRNA(Met)(f) and tRNA(Phe). High pressure liquid chromatography analysis showed the methylated product to be m(1)G. Subcellular fractionation and immunoblotting of a strain expressing a green fluorescent protein-tagged version of the TRM5 gene revealed that the enzyme was localized to both cytoplasm and mitochondria. The slightly larger mitochondrial form was protected from protease digestion, indicating a matrix localization. Analysis of N-terminal truncation mutants revealed that a Trm5p active in the cytoplasm could be obtained with a construct lacking amino acids 1-33 (Delta1-33), whereas production of a Trm5p active in the mitochondria required these first 33 amino acids. Yeast expressing the Delta1-33 construct exhibited a significantly lower rate of oxygen consumption, indicating that efficiency or accuracy of mitochondrial protein synthesis is decreased in cells lacking m(1)G37 methylation of mitochondrial tRNAs. These data suggest that this tRNA modification plays an important role in reading frame maintenance in mitochondrial protein synthesis.  相似文献   

17.
18.
Protein synthesis is initiated universally with the amino acid methionine. In Escherichia coli, studies with anticodon sequence mutants of the initiator methionine tRNA have shown that protein synthesis can be initiated with several other amino acids. In eukaryotic systems, however, a yeast initiator tRNA aminoacylated with isoleucine was found to be inactive in initiation in mammalian cell extracts. This finding raised the question of whether methionine is the only amino acid capable of initiation of protein synthesis in eukaryotes. In this work, we studied the activities, in initiation, of four different anticodon sequence mutants of human initiator tRNA in mammalian COS1 cells, using reporter genes carrying mutations in the initiation codon that are complementary to the tRNA anticodons. The mutant tRNAs used are aminoacylated with glutamine, methionine, and valine. Our results show that in the presence of the corresponding mutant initiator tRNAs, AGG and GUC can initiate protein synthesis in COS1 cells with methionine and valine, respectively. CAG initiates protein synthesis with glutamine but extremely poorly, whereas UAG could not be used to initiate protein synthesis with glutamine. We discuss the potential applications of the mutant initiator tRNA-dependent initiation of protein synthesis with codons other than AUG for studying the many interesting aspects of protein synthesis initiation in mammalian cells.  相似文献   

19.
N 6-Threonylcarbamoyladenosine (t6A) is a universal and pivotal tRNA modification. KEOPS in eukaryotes participates in its biogenesis, whose mutations are connected with Galloway-Mowat syndrome. However, the tRNA substrate selection mechanism by KEOPS and t6A modification function in mammalian cells remain unclear. Here, we confirmed that all ANN-decoding human cytoplasmic tRNAs harbor a t6A moiety. Using t6A modification systems from various eukaryotes, we proposed the possible coevolution of position 33 of initiator tRNAMet and modification enzymes. The role of the universal CCA end in t6A biogenesis varied among species. However, all KEOPSs critically depended on C32 and two base pairs in the D-stem. Knockdown of the catalytic subunit OSGEP in HEK293T cells had no effect on the steady-state abundance of cytoplasmic tRNAs but selectively inhibited tRNAIle aminoacylation. Combined with in vitro aminoacylation assays, we revealed that t6A functions as a tRNAIle isoacceptor-specific positive determinant for human cytoplasmic isoleucyl-tRNA synthetase (IARS1). t6A deficiency had divergent effects on decoding efficiency at ANN codons and promoted +1 frameshifting. Altogether, our results shed light on the tRNA recognition mechanism, revealing both commonality and diversity in substrate recognition by eukaryotic KEOPSs, and elucidated the critical role of t6A in tRNAIle aminoacylation and codon decoding in human cells.  相似文献   

20.
The specificity of methoxyamine for the cytidine residues in an Escherichia coli leuoine transfer RNA (tRNA1leu is described in detail. Of the six non-hydrogen-bonded cytidine residues in the clover-leaf model of this tRNA, four are very reactive (C-35, 53, 85 and 86) and two are unreactive (C-67 and 79).The specificity of l-cyclohexyl-3-[2-morpholino-(4)-ethyl]carbodiimide methotosylate for the uridine, guanosine and pseudouridine residues in the leucine tRNA was also investigated. The carbodiimide completely modified four uridine residues (U-33, 34, 50 and 51) and partially modified G-37 and Ψ-39. For technical reasons, the sites of partial modification in loop I of the tRNA were difficult to establish. There was no modification of base residues in loop IV nor of U-59 at the base of stem e of the tRNA.The modification patterns described for the leucine tRNA are compared with those observed for the E. coli initiator tRNA1met and su+III tyrosine tRNA. Several general conclusions regarding tRNA conformation are made. In particular, the evidence supporting a diversity of anticodon loop structures amongst tRNAs is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号