首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Dangerously few liaisons: a review of mate-finding Allee effects   总被引:1,自引:0,他引:1  
In this paper, we review mate-finding Allee effects from ecological and evolutionary points of view. We define ‘mate-finding’ as mate searching in mobile animals, and also as the meeting of gametes for sessile animals and plants (pollination). We consider related issues such as mate quality and choice, sperm limitation and physiological stimulation of reproduction by conspecifics, as well as discussing the role of demographic stochasticity in generating mate-finding Allee effects. We consider the role of component Allee effects due to mate-finding in generating demographic Allee effects (at the population level). Compelling evidence for demographic Allee effects due to mate-finding (as well as via other mechanisms) is still limited, due to difficulties in censusing rare populations or a failure to identify underlying mechanisms, but also because of fitness trade-offs, population spatial structure and metapopulation dynamics, and because the strength of component Allee effects may vary in time and space. Mate-finding Allee effects act on individual fitness and are thus susceptible to change via natural selection. We believe it is useful to distinguish two routes by which evolution can act to mitigate mate-finding Allee effects. The first is evolution of characteristics such as calls, pheromones, hermaphroditism, etc. which make mate-finding more efficient at low density, thus eliminating the Allee effect. Such adaptations are very abundant in the natural world, and may have arisen to avoid Allee effects, although other hypotheses are also possible. The second route is to avoid low density via adaptations such as permanent or periodic aggregation. In this case, the Allee effect is still present, but its effects are avoided. These two strategies may have different consequences in a world where many populations are being artificially reduced to low density: in the first case, population growth rate can be maintained, while in the second case, the mechanism to avoid Allee effects has been destroyed. It is therefore in these latter populations that we predict the greatest evidence for mate-finding Allee effects and associated demographic consequences. This idea is supported by the existing empirical evidence for demographic Allee effects. Given a strong effect that mate-finding appears to have on individual fitness, we support the continuing quest to find connections between component mate-finding Allee effects (individual reproductive fitness) and the demographic consequences. There are many reasons why such studies are difficult, but it is important, particularly given the increasing number of populations and species of conservation concern, that the ecological community understands more about how widespread demographic Allee effects really are, and why.  相似文献   

2.
In sexual organisms, low population density can result in mating failures and subsequently yields a low population growth rate and high chance of extinction. For species that are in tight interaction, as in host-parasitoid systems, population dynamics are primarily constrained by demographic interdependences, so that mating failures may have much more intricate consequences. Our main objective is to study the demographic consequences of parasitoid mating failures at low density and its consequences on the success of biological control. For this, we developed a deterministic host-parasitoid model with a mate-finding Allee effect, allowing to tackle interactions between the Allee effect and key determinants of host-parasitoid demography such as the distribution of parasitoid attacks and host competition. Our study shows that parasitoid mating failures at low density result in an extinction threshold and increase the domain of parasitoid deterministic extinction. When proned to mate finding difficulties, parasitoids with cyclic dynamics or low searching efficiency go extinct; parasitoids with high searching efficiency may either persist or go extinct, depending on host intraspecific competition. We show that parasitoids suitable as biocontrol agents for their ability to reduce host populations are particularly likely to suffer from mate-finding Allee effects. This study highlights novel perspectives for understanding of the dynamics observed in natural host-parasitoid systems and improving the success of parasitoid introductions.  相似文献   

3.
Many demographic and other factors are sex-specific. To assess their impacts on population dynamics, we need sex-structured models. Such models have been shown to produce results different from those predicted by asexual models, yet need to explicitly consider mating dynamics. Modeling mating is challenging and no generally accepted formulation exists. Mating is often impaired at low densities due to difficulties of individuals in locating mates, a phenomenon termed a mate-finding Allee effect. Widely applied models of this Allee effect assume either that only male density determines the rate at which females mate or that male and female densities are equal. Contrarily, when detailed models of mating dynamics are sometimes developed, the female mating rate is rarely reported, making quantification of the mate-finding Allee effect difficult. Here, we develop an individual-based model of mating dynamics that accounts for spatial search of one sex for another, and quantify the rate at which females mate, depending on male and female densities and under a number of reasonable mating scenarios. We find that this rate increases with male and female densities (hence observing a mate-finding Allee effect), in a decelerating or sigmoid way, that mating can be most efficient at either low or high female densities, and that the mate search rate may undergo density-dependent selection. We also show that mate search trajectories evolve to be as straight as possible when targets are sedentary, yet that when targets move the search can be less straight without seriously affecting the female mating rate. Some recommendations for modeling two-sex population dynamics are also provided.  相似文献   

4.
Somers MJ  Graf JA  Szykman M  Slotow R  Gusset M 《Oecologia》2008,158(2):239-247
We analysed 25 years (1980–2004) of demographic data on a small re-introduced population of endangered African wild dogs (Lycaon pictus) in Hluhluwe-iMfolozi Park (HiP), South Africa, to describe population and pack dynamics. As small populations of cooperative breeders may be particularly prone to Allee effects, this extensive data set was used to test the prediction that, if Allee effects occur, aspects of reproductive success, individual survival and population growth should increase with pack and population size. The results suggest that behavioural aspects of wild dogs rather than ecological factors (i.e. competitors, prey and rainfall) primarily have been limiting the HiP wild dog population, particularly a low probability of finding suitable mates upon dispersal at low pack number (i.e. a mate-finding Allee effect). Wild dogs in HiP were not subject to component Allee effects at the pack level, most likely due to low interspecific competition and high prey availability. This suggests that aspects of the environment can mediate the strength of Allee effects. There was also no demographic Allee effect in the HiP wild dog population, as the population growth rate was significantly negatively related to population size, despite no apparent ecological resource limitation. Such negative density dependence at low numbers indicates that behavioural studies of the causal mechanisms potentially generating Allee effects in small populations can provide a key to understanding their dynamics. This study demonstrates how aspects of a species’ social behaviour can influence the vulnerability of small populations to extinction and illustrates the profound implications of sociality for endangered species’ recovery. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.  相似文献   

6.
Recent work indicates that Allee effects (the positive relationship between population size and per capita growth rate) are critical in determining the successful establishment of invading species. Allee effects may create population thresholds, and failure to establish is likely if invading populations fall below these thresholds. There are many mechanisms that may contribute to Allee effects, but mate-location failure is a common cause in sexually reproducing insects. Consequently, mate-location failure represents a type of “weak link” that may be enhanced in order to achieve eradication of insect populations during the early stages of invasion. In this paper, spatially implicit models that account for mating behavior of both sexes are used to explore the enhancement of mate-location failure in pest eradication programs. Distinct from the previous studies, the Allee effect emerges from a mechanistic representation of mate-location failure in our model. Three specific eradication strategies, sterile insect release, mass-trapping, and mating disruption, are incorporated into the model and tested for their ability to depress population growth during the early stages of invasions. We conducted simulations with the model parameterized to represent two types of insects: Coleopteran-like insects which are long-lived and capable of multiple matings, but have low daily reproductive rates, and Lepidopteran-like insects which are capable of mating only once per generation, have an ephemeral reproductive stage, and have high reproductive rates. Simulations indicated that: (1) many insect pests are more likely to be eradicated than had been previously predicted by classic models which do not account for mate-finding difficulties, (2) for Lepidopteran-like insects, mass-trapping has the greatest potential for eradication among the three methods when a large number of traps can be installed, although mating-disruption will be the most effective if we can anticipate confusion or trail-masking mechanisms of disruption, and (3) populations of Coleopteran-like insects may be most effectively eradicated using the sterile male release method. Though more detailed models should be tailored for individual species, we expect that the spatially implicit approaches outlined in this paper can be widely adapted to study the efficiency of various eradication approaches in sparse conditions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Preventing the establishment of invading pest species can be beneficial with respect to averting future environmental and economic impacts and also in preventing the accumulation of control costs. Allee effects play an important role in the dynamics of newly established, low-density populations by driving small populations into self-extinction, making Allee effects critical in influencing outcomes of eradication efforts. We consider interactions between management tactics in the presence of Allee effects to determine cost-effective and time-efficient combinations to achieve eradication by developing a model that considers pesticide application, predator augmentation and mating disruption as control tactics, using the gypsy moth as a case study. Our findings indicate that given a range of constant expenditure levels, applying moderate levels of pesticides in conjunction with mating disruption increases the Allee threshold which simultaneously substantially decreases the time to eradication relative to either tactic alone. In contrast, increasing predation in conjunction with other tactics requires larger economic expenditures to achieve similar outcomes for the use of pesticide application or mating disruption alone. These results demonstrate the beneficial synergy that may arise from nonlinearities associated with the simultaneous application of multiple eradication tactics and offer new prospects for preventing the establishment of damaging non-native species.  相似文献   

8.
The Allee effect is one of the population consequences of sexual reproduction that has received increased attention in recent years. Due to its impact on small population dynamics, it is commonly accepted that Allee effects should render populations more extinction prone. In particular, monogamous species are considered more susceptible to the Allee effect and hence, more extinction prone, than polygamous species. Although this hypothesis has received theoretical support, there is little empirical evidence. In this study, we investigate (1) how variation in tertiary sex ratio affects the presence and intensity of the Allee effect induced by mating system, as well as (2) how this effect contributes to extinction risk. In contrast with previous predictions, we show that all mating systems are likely to experience a strong Allee effect when the operational sex ratio (OSR) is balanced. This strong Allee effect does not imply being exceptionally extinction prone because it is associated with an OSR that result in a relatively small extinction risk. As a consequence, the impact of Allee effects on overall extinction risk is buffered. Moreover, the OSR of natural populations appears to be often male biased, thus making it unlikely that they will suffer from an Allee effect induced by mating system.  相似文献   

9.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

10.
王文婷  王万雄 《生态学报》2014,34(16):4596-4602
在Dubis动力系统的基础上,建立了具有Allee效应的捕食系统模型。对系统的稳定性进行了分析,受Allee效应的影响,食饵种群可能因为种群大小处于临界点以下而趋于灭绝。通过对系统进行模拟,结果表明:不受Allee效应的影响,系统的演化属于一种理想化的情形系统到达P(平衡)点的时间较不受Allee效应影响时系统到达P点的时间短,不利于生物的进化,而在Allee效应的影响下,系统的演化将达到一个平衡状态。由此,说明Allee效应为濒临灭绝物种的管理提供了重要的理论依据,对管理部门的决策有参考指导作用。  相似文献   

11.
Many populations introduced into a novel environment fail to establish. One underlying process is the Allee effect, i.e., the difficulty of individuals to survive and reproduce when rare, and the consequently low or negative population growth. Although observations showing a positive relation between initial population size and establishment probability suggest that the Allee effect could be widespread in biological invasions, experimental tests are scarce. Here, we used a biological control program against Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae) in the United States to manipulate initial population size of the introduced parasitoid Aphelinus asychis Walker (Hymenoptera: Aphelinidae) originating from France. For eight populations and three generations after introduction, we studied spatial distribution and spread, density, mate-finding, and population growth. Dispersal was lower in small populations during the first generation. Smaller initial population size nonetheless resulted in lower density during the three generations studied. The proportion of mated females and the population sex ratio were not affected by initial population size or population density. Net reproductive rate decreased with density within each generation, suggesting negative density-dependence. But for a given density, net reproductive rate was smaller in populations initiated with few individuals than in populations initiated with many individuals. Hence, our results demonstrate a demographic Allee effect. Mate-finding is excluded as an underlying mechanism, and other component Allee effects may have been overwhelmed by negative density-dependence in reproduction. Impact of generalist predators could provide one potential explanation for the relationship between initial population size and net reproductive rate. However, the continuing effect of initial population size on population growth suggests genetic processes may have been involved in the observed demographic Allee effect.  相似文献   

12.
Allee effects may render exploited animal populations extinction prone, but empirical data are often lacking to describe the circumstances leading to an Allee effect. Arbitrary assumptions regarding Allee effects could lead to erroneous management decisions so that predictive modelling approaches are needed that identify the circumstances leading to an Allee effect before such a scenario occurs. We present a predictive approach of Allee effects for polar bears where low population densities, an unpredictable habitat and harvest-depleted male populations result in infrequent mating encounters. We develop a mechanistic model for the polar bear mating system that predicts the proportion of fertilized females at the end of the mating season given population density and operational sex ratio. The model is parametrized using pairing data from Lancaster Sound, Canada, and describes the observed pairing dynamics well. Female mating success is shown to be a nonlinear function of the operational sex ratio, so that a sudden and rapid reproductive collapse could occur if males are severely depleted. The operational sex ratio where an Allee effect is expected is dependent on population density. We focus on the prediction of Allee effects in polar bears but our approach is also applicable to other species.  相似文献   

13.
Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range expansion of established species, the initial colonizers of habitat beyond the organism’s current range are usually at low density, and thus could be subject to Allee dynamics. There has been consistent empirical and theoretical evidence demonstrating, and in some cases quantifying, the role of Allee dynamics in the gypsy moth, Lymantria dispar (L.), invasion of North America. In this review, we examine the potential causes of the Allee effect in the gypsy moth and highlight the importance of mate-finding failure as a primary mechanism behind an Allee effect, while the degree to which generalist predators induce an Allee effect remains unclear. We then explore the role of Allee effects in the establishment and spread dynamics of the gypsy moth system, which conceptually could serve as a model system for understanding how Allee effects manifest themselves in the dynamics of biological invasions.  相似文献   

14.
In this paper, we review how mate-finding Allee effects enter population dynamical models that consider both sexes, highlight possible limitations of the more widely used “one-sex” models, and outline the links between the different model classes. We further explore interactions between the mate-finding Allee effect and other mechanisms relevant to pest-control strategies: release of natural enemies, sterile male release, and culling. Many of these strategies impose an additional component Allee effect on the population, and we discuss which of them might be efficient in the control of pest species that also suffer from the failure to locate mates. We focus primarily on eradication thresholds; our simple models show that most of the strategies yield similar results, and depending on the costs, one strategy or a combination of several can lead to the most efficient control.  相似文献   

15.
Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980–2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery.  相似文献   

16.
We formulated a spatially explicit stochastic population model with an Allee effect in order to explore how invasive species may become established. In our model, we varied the degree of migration between local populations and used an Allee effect with variable birth and death rates. Because of the stochastic component, population sizes below the Allee effect threshold may still have a positive probability for successful invasion. The larger the network of populations, the greater the probability of an invasion occurring when initial population sizes are close to or above the Allee threshold. Furthermore, if migration rates are low, one or more than one patch may be successfully invaded, while if migration rates are high all patches are invaded.  相似文献   

17.
Reproductive activities are often associated with conspicuous morphology or behaviour that could be exploited by predators. Individuals can therefore face a trade-off between reproduction and predation risk. Here we use simple models to explore population-dynamical consequences of such a trade-off for populations subject to a mate-finding Allee effect and an Allee effect due to predation. We present our results in the light of populations that belong to endangered species or pests and study their viability and resilience. We distinguish several qualitative scenarios characterized by the shape and strength of the trade-off and, in particular, identify conditions for which the populations survive or go extinct. Reproduction can be so costly that the population always goes extinct. In other cases, the population goes extinct only over a certain range of low, intermediate or high levels of reproductive activities. Moreover, we show that predator removal (e.g. in an attempt to save an endangered prey species) has the least effect on populations with low cost of reproduction in terms of predation and, conversely, predator addition (e.g. to eradicate a pest) is most effective for populations with high predation cost of reproduction. Our results indicate that a detailed knowledge of the trade-off can be crucial in applications: for some trade-off shapes, only intermediate levels of reproductive activities might guarantee population survival, while they can lead to extinction for others. We therefore suggest that the fate of populations subject to the two antagonistic Allee effects should be evaluated on a case-by-case basis. Although the literature offers no quantitative data on possible trade-off shapes in any taxa, indirect evidence suggests that the trade-off and both Allee effects can occur simultaneously, e.g. in the golden egg bug Phyllomorpha laciniata.  相似文献   

18.
Estimation of extinction thresholds arising from Allee effects (Allee thresholds) and related probabilities of population extinction is notoriously difficult. One way is to analyze adequately parameterized population models. Traditionally, a point estimate is substituted for the Allee effect strength in such models. However, each point estimate entails an underlying uncertainty. We explore how accounting for this uncertainty affects the probability of population extinction, and show that this probability decreases sigmoidally with increasing population density, even in the absence of any stochasticity. Deviations from when only a point estimate of the Allee effect strength is used can be significant, unless stochasticity is added and the stochastic noise intensity is high. Significant deviations from when only a point estimate is used also occur when the Allee threshold and the environmental carrying capacity of the species are close enough one to another. We also show that the impact of the uncertainty in the Allee effect strength estimate increases as the Allee effect strength itself increases and decreases as the species recovery potential increases. This is not a good news, since we would like to preferentially and efficiently manage slowly recovering populations prone to strong Allee effects. Still, there is a way to come up with relatively good Allee threshold estimates. Besides an obvious option of collecting as many data as possible, the impact of the uncertainty can be mitigated by diversifying Allee effect experiments such that we put more emphasis on larger size groups. This is somewhat surprising, given that frequent complaints on the (im)possibility of detecting Allee effects concern difficulties in locating, observing and experimenting on rare populations. Our results extend current theory surrounding Allee effects and have broad ramifications for applied ecology.  相似文献   

19.
A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations.  相似文献   

20.
For an introduced plant species to become invasive, it must be able to reproduce even in initially small populations. We tested for Allee effects (reduced reproductive performance of individuals in small populations) in the nonclonal, buzz-pollinated shrub Senna didymobotrya in its invasive range in South Africa. The species is self-compatible, but we found that in its invasive range in South Africa it requires pollinators to set seed. Nearly all stigmas (90%) received pollen, but natural fruit set was very low (3-20%). Pollen receipt and fruit set were not significantly correlated with population size. We thus found no evidence for an ecological Allee effect arising from pollen limitation in small populations. Offspring seedling performance, measured in terms of stem volume and leaf area, was also not significantly correlated with the number of plants in the source population, indicating that genetic Allee effects, such as inbreeding depression, are either absent or of such a small magnitude that they would be unlikely to limit further spread of S. didymobotrya in South Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号