首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sterols of Candida lipolytica grown on n-alkanes were isolated by reverse phase HPLC and found to be mainly ergosterol, with small quantities of ergost-7-en-3β-ol, ergosta-7,22-dien-3β-ol, ergosta-7,24(28)-dien-3β-ol and ergosta-5,7,9(11),22-tetraen-3β-ol.  相似文献   

2.
Wild-type Neurospora crassa is completely inhibited by 5 ppm nystatin. Ultraviolet-induced mutants have been isolated that grow in the presence of 60 ppm of the antibiotic. Gas-liquid chromatographic, mass spectroscopic, and nuclear magnetic resonance analyses showed the wild-type sterols to be ergosterol (ergosta-5,7,22-trien-3β-ol) and episterol (ergosta-7,24(28)-dien-3β-ol) in a 3:1 ratio. The mutants contained lichesterol (ergosta-5,8,22-trien-3β-ol) and fecosterol (ergosta-8,24(28)-dien-3β-ol) in a 2:1 ratio, differing from the wild type only in the position of the B-ring unsaturation. A deficiency of an ergosta-8,24 (28)-dien-3β-ol:ergosta-7,24(28)-dien-3β-ol isomerase is indicated.  相似文献   

3.
Six nitrogen-, sulfur- and cyclopropane-containing derivatives of cholestanol were examined as inhibitors of growth and sterol biosynthesis in the trypanosomatid protozoan Crithidia fasciculata. The concentrations of inhibitors in the culture medium required for 50% inhibition of growth were 0.32 microM for 24-thia-5 alpha,20 xi-cholestan-3 beta-ol (2), 0.009 microM for 24-methyl-24-aza-5 alpha,20 xi-cholestan-3 beta-ol (3), 0.95 microM for (20,21),(24,-25)-bis-(methylene)-5 alpha,20 xi-cholestan-3 beta-ol (4), 0.13 microM for 22-aza-5 alpha,20 xi-cholestan-3 beta-ol (5), and 0.3 microM for 23-azacholestan-3-ol (7). 23-Thia-5 alpha-cholestan-3 beta-ol (6) had no effect on protozoan growth at concentrations as high as 20 microM. Ergosterol was the major sterol observed in untreated C. fasciculata, but significant amounts of ergost-7-en-3 beta-ol, ergosta-7,24(28)-dien-3 beta-ol, ergosta-5,7,22,24(28)-tetraen-e beta-ol, cholesta-8,24-dien-3 beta-ol, and, in an unusual finding, 14 alpha-methyl-cholesta-8,24-dien-3 beta-ol were also present. When C. fasciculata was cultured in the presence of compounds 2 and 3, ergosterol synthesis was suppressed, and the principal sterol observed was cholesta-5,7,24-trien-3 beta-ol, a sterol which is not observed in untreated cultures. The presence of this trienol strongly suggests that 2 and 3 specifically inhibit the S-adenosylmethionine:sterol C-24 methyltransferase but do not interfere with the normal enzymatic processing of the sterol nucleus. When C. fasciculata was cultured in the presence of compounds 5 and 7, the levels of ergosterol and ergost-7-en-3 beta-ol were suppressed, but the amounts of the presumed immediate precursors of these sterols, ergosta-5,7,22,24(28)-tetraen-3 beta-ol and ergosta-7,24-(28)-dien-3 beta-ol, respectively, were correspondingly increased. These findings suggest that 5 and 7 specifically inhibit the reduction of the delta 24(28) side chain double bond. When C. fasciculata was cultured in the presence of compound 4, ergosterol synthesis was suppressed, but the sterol distribution in these cells was complex and not easily interpreted. Compound 6 had no significant effect on sterol synthesis in C. fasciculata.  相似文献   

4.
The sterol content of Saccharomyces strains with altered ergosterol metabolism was studied by UV-spectrophotometry, thin-layer chromatography and chromatographic mass-spectroscopy. A technique for estimation of D-vitamin activity of the yeast strains is proposed. The irradiated biomass of the strains accumulated ergosta-5,7-dien-3 beta-ol and also cholesta-5,7,24-trien-3 beta-ol and cholesta-5,7,22,24-tetraen-3 beta-ol is characterized by high antirachitic activity.  相似文献   

5.
Three mutants of Chlamydomonas reinhardtii (strain arg7cw15) were obtained using the strategy of insertional mutagenesis by random plasmid integration with subsequent selection for resistance against the polyene antibiotic nystatin. Sterols were isolated by precipitation with digitonin, fractionated by both normal and argentation TLC, and then analysed by GLC and GC-MS. All the mutants accumulated ergosta-5,7,22,24(28)-tetraenol, ergosta-5,7,24(28)-trienol, ergosta-7,24(28)-dienol, stigmasta-5,7,22,24(28)-tetraenol, stigmasta-5,7,24(28)-trienol, stigmasta-8,24(28)-dienol and stigmasta-7,24(28)-dienol, while ergosterol and 7-dehydroporiferasterol which are the only major sterol components of the original strain were absent in the mutants. It is concluded that all these mutants are impaired in this C24(28) reductase which catalyses the reduction of the C24(28) tetraenol to the corresponding 24-alkyl sterol. There is strong evidence that the same enzyme acts on both the C28 and C29 sterol series. This view is also supported by Southern blot hybridisation analysis revealing that in all three mutants, plasmid insertion occurred at the same site indicating the disruption of the same gene. Due to the insertional nature of the mutations, the strains can be used for cloning the corresponding gene.  相似文献   

6.
Sterols extracted from Xanthoria parietina with organic solvents and released by saponification of the residual lichen tissue were analysed by GC-MS. The main components of the solvent-extractable sterols were two C28 trienes and those of the more tightly bound sterols were ergost-5-en-3β-ol and two C29 compounds. The structures of the C28 compounds were shown to be ergosta-5,7,22-trien-3β-ol, Ia (ergosterol) and the previously unreported ergosta-5,8,22-trien-3β-ol, IIa, for which the name lichesterol is proposed. The main C29 sterol was identified as (24R)-24-ethylcholesta-5,22-dien-3β-ol (poriferasterol).  相似文献   

7.
The sterol esters of Phycomyces blakesleeanus are based on ergosterol, episterol, ergosta-7-en-3β-ol, ergosta-7,22-dien-3β-ol, cholesterol, lan  相似文献   

8.
The fruit bodies of the Basidiomycete Scleroderma polyrhizum have been shown to contain the steroids ergosta-4,6,8(14) 22-tetraen-3-one and 5α,8α-epidoxyergosta-6,22-dien-3β-ol and also palmitic and oleic acids.  相似文献   

9.
The major ecdysteroids in large worker pupae of the leaf-cutting ant Acromyrmex octospinosus were characterized at the peak ecdysteroid concentration by using high-performance liquid chromatography, enzyme immunoassay, and mass spectrometry. In decreasing amounts, they were determined to be makisterone A, an unidentified C28 ecdysteroid bearing a molecular weight of 494, 20-hydroxyecdysone (ratio of 1 to 6 as compared to makisterone A), and putative but negligible ecdysone. The presence of both C28 and C27 ecdysteroids is discussed in relation to the content of 4-desmethylsterols determined by gas chromatography and mass spectrometry to be ergosta-5,7,24 (28)-trien-3β-ol, ergosterol, ergosta-5,7-dien-3β-ol and ergosta-7,24(28)-dien-3β-ol for the main sterols, and with a small amount of cholesterol.  相似文献   

10.
The following sterols have been isolated from the fungi, Phycomyces blakesleeanus and Agaricus campestris: ergosterol, lanosterol, 24-methylene-24,25-dihydrolanosterol and episterol. 4,4-Dimethyl-5α-ergosta-8.24(28)-dien-3β-ol and 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol have been tentatively identified. Evidence for the incorporation of label from l-methionine-[methyl-14C] into some of these sterols in P. blakesleeanus has been obtained. The significance of these sterols in ergosterol biosynthesis is discussed.  相似文献   

11.
Eight sterols were observed in Chlorella ellipsoidea and the four major components were identified as ergosterol, 5α-ergost-7-en-3β-ol, 22-trans-ergosta-5,8(9),22-trien-3β-ol and ergosta-5,8(9)-dien-3β-ol. This is the first report of the latter two sterols from green plants.  相似文献   

12.
Specifically (tritium) labeled precursors (VIII, X, XIV, XV, and XVI), upon feeding to Penicillium rubrum, are incorporated into ergosta-4,6,8(14),22-tetraen-3-one (IV) to the extent of 14.2, 4.5, 11.4, 16.3, and 5.5% respectively. Proof that the ergostane skeleton was incorporated intact was afforded by a chemical-biosynthetic cycle, the latter stages of which entailed reduction of isolated (IV) to ergosterone (VIII), followed by removal of the label through base-catalyzed exchange. A search of the growth medium of P. rubrum revealed the presence of nonartefactual ergosterol epidioxide (XIII) and ergosta-6,22-dien-3β,5α,8α-triol (XVIII). The incorporation data are consistent with a set of multiple pathways with no unique biosynthetic sequence apparent.  相似文献   

13.
The effects of 23-azacholesterol on sterol biosynthesis and growth of Saccharomyces cervisiae were examined. In the presence of 0.2, 0.5, and 1 micron 23-azacholesterol, aerobically-growing yeast produced a nearly constant amount of ergosta-5,7,22,24(28)-tetraenol (approx. 36% of total sterol) and slowly accumulated zymosterol with a concommitant decline in ergosterol synthesis. Growth and total sterol content of yeast cultures treated with 0.2-1 micron 23-azacholesterol were similar to that of the control culture. Yeast cultures treated with 5 and 10 micron 23-azacholesterol produced mostly zymosterol (58-61% of total sterol), while ergosta-5,7,22,24(28)-tetraenol production declined to less than 10% of total sterol. The observed changes in the distribution of sterols in treated cultures are consistent with inhibition of 24-methylene sterol 24(28)-sterol reductase (total inhibition at 1 micron 23-azacholesterol) and of 24-sterol methyltransferase (71% inhibition at 10 micron 23-azacholesterol). Yeast cultures treated with 10 micron 23-azacholesterol were found to contain 4,4-dimethylcholesta-8,14,24-trienol and 4alpha-methylcholesta-8,14,24-trienol, which were isolated and characterized for the first time.  相似文献   

14.
The incorporation of [28 14C] ergosta-7,24(28)-dien-3β-ol into ergosta-7,22-dien-3β,5α-diol by aerobically growing S.cerevisiae has established its presence in this organism. This, coupled with previous work, is considered to be substantive evidence for the operation of a hydroxylation-dehydration mechanism in the introduction of Δ5 unsaturation in ergosterol biosynthesis in yeast.  相似文献   

15.
Ergosterol, episterol, 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol and 24-methylene-24,25-dihydrolanosterol, isolated from Phycomyces blakesleeanus grown in the presence of methionine-[methyl-2H3], each contained two deuterium atoms; lanosterol, however, was unlabelled. The 14C:3H atomic ratio of the following sterols isolated from P. blakesleeanus grown in the presence of mevalonic acid-[2-14C,(4R)-4-3H1], was: ergosterol, 5:3; episterol, 5:4; ergosta-5,7,24(28)-trien-3β-ol, 5:3; 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol, 5:4; 24-methylene-24,25-dihydrolanosterol, 6:5; lanosterol, 6:5. The significance of these results in terms of ergosterol biosynthesis is discussed.  相似文献   

16.
The effect of low concentrations of a specifically designed sterol-24-transmethylase inhibitor, 25-aza-24, 25-dihydrozymosterol (10) on sterol production in Saccharomyces cerevisiae was examined. The synthesis of cholesta-5,7,22,24-tetraen-3beta-ol (4), its 7,22,24 analog (15) and the 7,24 analog (5) coupled with the availability of zymosterol (6) and cholesta-5,7,24-3beta-ol (3) derivatives facilitated a search for these sterols in cultures treated with this inhibitor. When S. cerevisiae was grown in the presence of 1.3 and 5 muM 10, it produced no ergosterol but accumulated zymosterol (6), cholesta-5,7,22,24-tetraen-3beta-ol (4) and related C27 sterols (3 and 5). These results indicate blockage of the side chain methylation that normally occurs during the biosynthesis of ergosterol in yeast by compound 10 is efficient. The cholesta-5,7,22,24-tetraen-3beta-ol is a close structural analog of provitamin D3 (7-dehydrocholesterol). The inhibited yeast thus provides a source of a potentially new provitamin D3 substitute.  相似文献   

17.
Rice planthoppers and anobiid beetles harbor intracellular yeastlike symbiotes (YLS), whose sterols are nutritionally advantageous for the host insects that cannot synthesize sterols. YLS of anobiid beetles synthesize ergosterol, whereas YLS of planthoppers produce ergosta-5,7,24(28)-trienol, which is a metabolic intermediate in the ergosterol biosynthetic pathway in yeasts. Since sterol C-22 desaturase (ERG5p, CYP61) metabolizes ergosta-5,7,24(28)-trienol into ergosta-5,7,22,24(28)-tetraenol, which is the penultimate compound in the ergosterol biosynthesis, we examined the gene of this enzyme to determine whether this enzyme works in the planthopper YLS. C-22 desaturase genes (ERG5) of YLS of the planthoppers and beetles had four introns in identical positions; such introns are not found in the reported genes of yeasts. Cytochrome P450 cysteine heme-iron ligand signature motif was well conserved among the putative amino acid sequences. The gene expression of the planthopper YLS were strongly suppressed, and the genes possessed nonsense mutations. The accumulation of ergosta-5,7,24(28)-trienol in the planthopper YLS was attributed to the inability of the planthopper YLS to produce functional ERG5p.  相似文献   

18.
硬孔灵芝的化学成分研究   总被引:5,自引:0,他引:5  
采用硅胶柱层析法进行分离纯化,从硬孔灵芝Ganoderma duropora的氯仿萃取物中分离得到甾类化合物8种。根据波谱数据,化合物1-8结构分别被鉴定为:麦角甾醇、麦角甾-7,22-二烯-3β-醇、麦角甾-7,22-二烯-3-酮、6,9-环氧麦角甾-7,22-二烯-3β-醇、过氧麦角甾醇、3,5-二羟基麦角甾-7,22-二烯-6-酮、β-谷甾醇和胡萝卜苷。  相似文献   

19.
The lipid-soluble fraction of the fungus Ganoderma australe belonging to the family Polyporaceae has yielded ergosterol palmitate, ergosta-7,22-dien-3-one, ergosterol and lanosta-7,9(11),24-trien-3β,21-diol. This fungus is the second reported natural source of the latter compound whose structure is now established on the basis of spectral data.  相似文献   

20.
鲍氏层孔菌子实体的化学成分研究   总被引:2,自引:0,他引:2  
采用硅胶和Sephadex LH20柱层析方法,从鲍氏层孔菌子实体提取物中分离得到8个化合物。运用NMR和MS等波谱法分析和鉴定为7(8),22(23)-二烯-3-酮-麦角甾烷、4,6,8(14),22(23)-四烯-3-酮-麦角甾烷、麦角甾醇、过氧化麦角甾醇、三十烷酸对羟基苯乙酯、4-(3,4-二羟苯基)-3-丁烯-2-酮、hispolon、hispidin。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号