首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of aspirin administration and presumed blockade of prostaglandin synthesis on renal sodium excretion, plasma and extracellular fluid volumes, and blood pressure were examined in rats on a high sodium intake. After acute salt loading aspirin treated rats showed an impaired sodium excretion, while no changes in glomerular filtration rate were observed. In chronically loaded rats (7 weeks) administration of aspirin induced significant increases in both plasma and extracellular fluid volume, but no significant changes in blood pressure were found. The results are consistent with the hypothesis that prostaglandins mediate renal sodium excretion and therefore participate in extracellular fluid volume regulation.  相似文献   

2.
D Susic  J C Sparks 《Prostaglandins》1975,10(5):825-831
The effect of aspirin administration and presumed blockade of prostaglandin synthesis on renal sodium excretion, plasma and extracellular fluid volumes, and blood pressure were examined in rats on a high sodium intake. After acute salt loading aspirin treated rats showed an impaired sodium excretion, while no changes in glomerular filtration rate were observed. In chronically loaded rats (7 weeks) administration of aspirin induced significant increases in both plasma and extracellular fluid volume, but no significant changes in blood pressures were found. The results are consistent with the hypothesis that prostaglandins mediate renal sodium excretion and therefore participate in extracellular fluid volume regulation.  相似文献   

3.
Under steady-state conditions, urinary sodium excretion matches dietary sodium intake. Because extracellular fluid osmolality is tightly regulated, the quantity of sodium in the extracellular fluid determines the volume of this compartment. The left atrial volume receptor mechanism is an example of a neural mechanism of volume regulation. The left atrial mechanoreceptor, which functions as a sensor in the low-pressure vascular system, is located in the left atrial wall, which has a well-defined compliance relating intravascular volume to filling pressure. The left atrial mechanoreceptor responds to changes in wall left atrial tension by discharging into afferent vagal fibers. These fibers have suitable central nervous system representation whose related efferent neurohumoral mechanisms regulate thirst, renal excretion of water and sodium, and redistribution of the extracellular fluid volume. Efferent renal sympathetic nerve activity undergoes appropriate changes to facilitate renal sodium excretion during sodium surfeit and to facilitate renal sodium conservation during sodium deficit. By interacting with other important determinants of renal sodium excretion (e.g., renal arterial pressure), changes in efferent renal sympathetic nerve activity can significantly modulate the final renal sodium excretion response with important consequences in pathophysiological states (e.g., hypertension, edema-forming states).  相似文献   

4.
To investigate whether prolonged water immersion (WI) results in reduction of central blood volume and attenuation of renal fluid and electrolyte excretion, these variables were measured in connection with 12 h of immersion. On separate days, nine healthy males were investigated before, during, and after 12 h of WI to the neck or during appropriate control conditions. Central venous pressure, stroke volume, renal sodium (UNaV) and fluid excretion increased on initiation of WI and thereafter gradually declined but were still elevated compared with control values at the 12th h of WI. Atrial natriuretic peptide (ANP) concentration in plasma initially increased threefold during WI and thereafter declined to preimmersion levels, whereas plasma renin activity, plasma aldosterone, and norepinephrine remained constantly suppressed. It is concluded that, compared with the initial increases, central blood volume (central venous pressure and stroke volume) is reduced during prolonged WI and renal fluid and electrolyte excretion is attenuated. UNaV is still increased at the 12th h of WI, whereas renal water excretion returns to control values within 7 h. The WI-induced changes in ANP, plasma renin activity, plasma aldosterone, and norepinephrine may all contribute to the initial increase in UNaV. The results suggest, however, that the attenuation of UNaV during the later stages of WI is due to the decrease in ANP release.  相似文献   

5.
The response of the renin-angiotensin system, extracellular fluid volume, plasma volume, plasma sodium and mean arterial blood pressure to an increase in salt intake (8% NaCl in the diet for 10 days) was compared in immature (20 days) and adult (80 days) rats which were either sham-operated or uninephrectomised. Salt feeding induced a significant increase in plasma sodium in immature animals, and a greater suppression of the renin-angiotensin system in immature than in adult rats, although extracellular fluid volume, plasma volume and blood pressure remained unchanged. Following uninephrectomy, however, the renin-angiotensin system was maximally suppressed in both age groups and in younger animals extracellular fluid volume, plasma volume and blood pressure were significantly increased. It is concluded that (i) the renin-angiotensin system in immature rats is more responsive to a chronically increased salt intake, (ii) this greater responsiveness partly compensates for the lower natriuretic efficiency of the kidneys of immature rats, which becomes evident after reduction of renal mass, and (iii) these events bear a relation to the higher susceptibility of prepubertal rats to the hypertensive effect of a chronically increased salt intake.  相似文献   

6.
The purpose of this study was to assess the participation of the atrial natriuretic peptide (ANP)-cGMP system in electrolyte and volume handling of cholestatic rats submitted to an acute oral sodium load. Cholestasis was induced by ligation and section of the common bile duct (n = 51). Control rats were sham operated (n = 56). Three weeks after surgery, 24-hr urinary volume, sodium, potassium, cGMP and creatinine excretion were measured. Three days later, animals received 10 mmol/kg NaCl (1 M) by gavage, and urinary excretion was measured for 6 hr. In parallel groups of rats, plasma volume, electrolytes and ANP concentration, extracellular fluid volume (ECFV), and renal medullary ANP-induced cGMP production were determined in basal conditions or 1 hr after oral sodium overload. As compared with controls, cholestatic rats had a larger ECFV and higher plasma ANP (67.2 +/- 5.2 vs 39.7 +/- 3.5 pg/ml), but lower hematocrit and blood volume, and were hyponatremic. Cholestatic rats showed higher basal excretion of sodium, potassium, and volume than controls, but equal urinary cGMP. After the NaCl overload, cholestatic rats showed a reduced sodium excretion but equal urinary cGMP. One hr after sodium overload, both groups showed hypernatremia, but whereas in control rats ECFV and ANP increased (50.7 +/- 4.1 pg/ml), in cholestatic rats ECFV was unchanged, and plasma volume and ANP were reduced (37.5 +/- 5.8 pg/ml). ANP-induced cGMP production in renal medulla was similar in cholestatic and control nonloaded rats (14.2 +/- 5.2 vs 13.4 +/- 2.6 fmol/min/mg). One hr after the load, medullary cGMP production rose significantly in both groups, without difference between them (20.6 +/- 3.1 vs 22.7 +/- 1. 7 fmol/min/mg). We conclude that the blunted excretion of an acute oral sodium load in cholestatic rats is associated with lower plasma ANP due to differences in body fluid distribution and cannot be explained by renal refractoriness to ANP.  相似文献   

7.
R K Handa  V M Buckalew 《Life sciences》1992,51(20):1571-1575
The effect of myristoyl-lysophosphatidylcholine (myristoyl-LPC) on renal hemodynamics, electrolyte and water excretion was examined over a 90 min period in sodium pentobarbital anesthetized male Sprague Dawley rats. Intravenous infusion of myristoyl-LPC at 13 +/- 3 pmol/min resulted in a small fall in systemic blood pressure, a 13% decrease in renal plasma flow without significantly altering glomerular filtration rate and produced a slightly greater excretion of sodium and water than vehicle controls. These results suggest that short term myristoyl-LPC administration can significantly alter renal function producing a weak natriuresis and diuresis which is not dependent on systemic blood pressure and renal hemodynamic changes.  相似文献   

8.
Aldosterone has been recognized as an important sodium retaining hormone for many years. Recently we have demonstrated that angiotensin II has a much more powerful antinatriuretic effect than that of aldosterone. The importance of angiotensin II in regulation of sodium excretion has been observed in experiments in which angiotensin II has been infused intravenously or into the renal artery in acute and chronic situations, and in studies involving blockade of angiotensin II formation. In other experiments we have studied the effects of changes in renal perfusion pressure on sodium excretion. While earlier work by others indicated that an acute 10 mm Hg increase in perfusion pressure would increase sodium excretion 60%-70% we observed that a chronic 10 mm Hg change in perfusion pressure would result in a 300% change in sodium excretion. In view of evidence suggesting that changes in the ability of the kidney to excrete sodium normally at normal arterial pressure is an important element in hypertension we studied the effects of aldosterone and angiotensin II on arterial pressure regulation in normal dogs. High physiological levels of each hormone were infused intravenously for several weeks. Both produced sustained hypertension. Aldosterone hypertension was a typical volume loading type with sodium retention, increased blood volume and extracellular fluid volume and a slow rise in arterial pressure. Angiotensin hypertension was a typical vasoconstrictor type with high peripheral resistance, normal or decreased blood volume, decreased cardiac output, a rapid rise in arterial pressure and only initial sodium retention.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Whole-body and organ fluid compartment sizes and plasma sodium concentrations were measured in conventional, GI decontaminated, bile duct ligated, and choledochostomized rats at different times after various doses of gamma radiation. In addition, sodium excretion was measured in rats receiving lethal intestinal radiation injury. After doses which were sublethal for 3-5 day intestinal death, transient decreases occurred in all the fluid compartments measured (i.e., total body water, extracellular fluid space, plasma volume). No recovery of these fluid compartments was observed in rats destined to die from intestinal radiation injury. The magnitude of the decreases in fluid compartment sizes was dose dependent and correlated temporally with the breakdown and recovery of the intestinal mucosa but was independent of the presence or absence of enteric bacteria or bile acids. Associated with the loss of fluid was an excess excretion of 0.83 meq of sodium between 48 and 84 h postirradiation. This represents approximately 60% of the sodium lost from the extracellular fluid space in these animals during this time. The remaining extracellular sodium loss was due to redistribution of sodium to other spaces. It is concluded that radiation-induced breakdown of the intestinal mucosa results in lethal losses of fluid and sodium as evidenced by significant decreases in total body water, extracellular fluid space, plasma volume, and plasma sodium concentration, with hemoconcentration. These changes are sufficient to reduce tissue perfusion leading to irreversible hypovolemic shock and death.  相似文献   

10.
Recent work suggests that hypophysectomized (HYPOX) rats show low levels of atrial natriuretic factor (ANF) and an attenuated diuresis and natriuresis to blood volume expansion. The purpose of this was (i) to examine the effect of various hormone replacements on ANF and renal excretion in HYPOX rats and (ii) to compare the renal responses to exogenous ANF in intact and HYPOX rats. Groups of rats received subcutaneous pellet implant of either dexamethasone (DEX), thyroxine (T4), or a placebo. Approximately 1 week later, they were anesthetized and subjected to a 20% blood volume expansion. DEX rats had a higher mean arterial pressure than placebo-treated rats while both MAP and heart rate were higher in T4 rats. Only the DEX rat showed augmented renal responses to volume expansion while no group showed significant changes in plasma ANF concentration during volume expansion. In a second series, groups of HYPOX rats received renal capsular transplants of either six hemi-pituitaries or six pieces of muscle which markedly raised serum prolactin levels in the hemi-pituitary group. The hemi-pituitary rats showed a greater diuresis and natriuresis during volume expansion than the muscle group and also showed a transient increase in plasma ANF. In addition, groups of either intact or HYPOX rats were anesthetized and received intravenous bolus injections of ANF. Both intact and HYPOX rats showed a very similar diuresis and natriuresis to exogenous ANF. However, potassium excretion was markedly reduced in HYPOX rats. The results show that DEX augments the renal responses to volume expansion by some mechanism which does not involve changes in plasma ANF. Thyroxine increases mean arterial pressure and heart rate in HYPOX rats but does not augment the renal or ANF responses to volume expansion. Chronic elevations in prolactin increase the renal response to volume expansion. Finally, the kidneys of HYPOX rats are capable of increasing sodium and water output in response to large doses of exogenous ANF.  相似文献   

11.
Thomas P. Green 《Life sciences》1984,34(22):2169-2176
The effects on renal sodium excretion of two systemic vasodilators, hydralazine and diazoxide, were investigated in volume expanded, anesthetized rats with unilaterally denervated kidneys. Urinary sodium excretion and fractional excretion of filtered sodium increased following hydralazine but decreased following diazoxide. Changes in renal hemodynamics were dissimilar as well: renal plasma flow was increased following hydralazine, but unchanged with diazoxide. All changes in renal sodium excretion and renal hemodynamics following hydralazine were prevented by pretreatment with indomethacin. Renal denervation accentuated the increases in fractional sodium excretion and renal blood flow that occured following hydralazine.Hydralazine and diazoxide differ substantially in their effects on renal sodium excretion, apparently due to the stimulation of renal prostaglandins by the former agent. Although renal innervation attenuates the natriuretic effect of hydralazine, stimulation of the sympathetic nervous system does not account for differences in the renal effects of these two drugs.  相似文献   

12.
Controlled mandatory ventilation with positive end-expiratory pressure (PEEP) reduces renal sodium excretion. To examine whether atrial natriuretic factor (ANF) is involved in the renal response to alterations in end-expiratory pressure in hypervolemic dogs, experiments were performed on anesthetized dogs with increased blood volume. Changing from PEEP to zero end-expiratory pressure (ZEEP) increased sodium excretion by 145 +/- 61 from 310 +/- 61 mumol/min and increased plasma immunoreactive (ir) ANF by 104 +/- 27 from 136 +/- 21 pg/ml. Changing from ZEEP to PEEP reduced sodium excretion by 136 +/- 36 mumol/min and reduced plasma irANF by 98 +/- 22 pg/ml. To examine a possible causal relationship, ANF (6 ng.min-1.kg body wt-1) was infused intravenously during PEEP to raise plasma irANF to the same level as during ZEEP. Sodium excretion increased by 80 +/- 36 from 290 +/- 78 mumol/min as plasma irANF increased by 96 +/- 28 from 148 +/- 28 pg/ml. We conclude that alterations in end-expiratory pressure lead to great changes in plasma irANF and sodium excretion in dogs with increased blood volume. Comparison of the effects of altering end-expiratory pressure and infusing ANF indicates that a substantial part of the changes in sodium excretion during variations in end-expiratory pressure can be attributed to changes in plasma irANF.  相似文献   

13.
To evaluate the role of chloride in the pathogenesis of salt-dependent deoxycorticosterone (DOC) hypertension, we studied young Wistar rats chronically loaded with sodium bicarbonate (NaHCO(3)) or sodium chloride (NaCl) which were administered either in the diet or in the drinking fluid. Selective sodium loading (without chloride) increased blood pressure (BP) in DOC-treated animals only if NaHCO(3) was provided in the diet. In contrast, no significant blood pressure changes were induced by DOC treatment in rats drinking NaHCO(3) solution. Hypernatremia and high plasma osmolality occurred only in rats drinking NaCl or NaHCO(3) solutions. Compared to great volume expansion in NaCl-loaded DOC-treated rats, the degree of extracellular fluid volume expansion (namely of its interstitial fraction) was substantially lower in both NaHCO(3)-loaded groups in which significant hypokalemia was observed. NaHCO(3)-drinking rats without significant blood pressure response to DOC treatment represented the only experimental group in which blood volume was not expanded. In conclusion, our data confirm previous observations that NaHCO(3) loading is less potent in eliciting DOC hypertension than NaCl loading, but blood pressure rise in rats fed NaHCO(3) diet clearly demonstrated that selective sodium loading could potentiate the development of DOC hypertension if NaHCO(3) is offered within the appropriate dietary regimen. The reasons for the failure of NaHCO(3)-drinking rats to elevate blood pressure in response to chronic mineralocorticoid treatment are not obvious. However, the absence of a significant plasma volume expansion together with hypernatremia and increased plasma osmolality suggest a considerable degree of dehydration in these animals which fail to increase their fluid consumption compared to water drinking rats.  相似文献   

14.
Sodium balance determines the extracellular fluid volume and sets arterial blood pressure (BP). Chronically raised BP (hypertension) represents a major health risk in Western societies. The relationship between BP and renal sodium excretion (the pressure/natriuresis relationship) represents the key element in defining the BP homeostatic set point. The renin–angiotensin–aldosterone system (RAAS) makes major adjustments to the rates of renal sodium secretion, but this system works slowly over a period of hours to days. More rapid adjustments can be made by the sympathetic nervous system, although the kidney can function well without sympathetic nerves. Attention has now focussed on regulatory mechanisms within the kidney, including extracellular nucleotides and the P2 receptor system. Here, we discuss how extracellular ATP can control renal sodium excretion by altering the activity of epithelial sodium channels (ENaC) present in the apical membrane of principal cells. There remains considerable controversy over the molecular targets for released ATP, although the P2Y2 receptor has received much attention. We review the available data and reflect on our own findings in which ATP-activated P2Y and P2X receptors make adjustments to ENaC activity and therefore sodium excretion.  相似文献   

15.
Effects of insulin on plasma concentration and renal excretion of sodium and potassium were compared in conscious dogs 1) maintained in water and electrolytes balance (Series 1, 10 dogs), 2) depleted of electrolytes by repeated i.v. loading with 20% mannitol (Series 2, 10 dogs), and 3) aldosterone treated (0.8 micrograms.kg-1.h-1 i.v., Series 3, 10 dogs). In each Series intravenous infusion of insulin at a rate of 0.05 U.kg-1.h-1 elicited transient increase in plasma sodium concentration and prolonged hypokalemia. Repeated loading with mannitol in Series 2 elicited significant elevation of plasma sodium, ADH and aldosterone concentrations, as well as decrease in extracellular fluid volume. Infusion of insulin in this Series elicited smaller decrease in plasma potassium concentration and longer lasting hypernatremia than in dogs in water-electrolytes balance. Aldosterone infusion in Series 3 did not change hypokalemic effect of insulin but attenuated hypernatremia. Infusion of insulin in Series 1 elicited increase of sodium excretion and decrease in potassium excretion. These effects were absent in Series 2 and 3. The results indicate that depletion of electrolytes and blood aldosterone elevation modify the effects of insulin on plasma concentration and renal excretion of sodium and potassium.  相似文献   

16.
This study evaluated the effect of oral crude Vernonia polyanthes Less. hydroalcoholic extract administration (CHE, 0.5 and 1.0 g/kg body wt., daily for 7 days) on arterial blood pressure and renal sodium excretion in conscious rats. CHE administration decreased arterial blood pressure dose-dependently followed by a significant rise in creatinine clearance and a fall in fractional post-proximal sodium excretion was compared to the control group. These results suggest that blood pressure decrease induced by the oral crude Vernonia hydroalcoholic extract may be blunted by reduction of the post-proximal renal sodium excretion. Thus, the present study shows that Vernonia extract is a potential vasodilatation agent in normotensive rats without any effects on renal tubule autoregulation mechanisms.  相似文献   

17.
The initial response to bed rest involves an increase in central blood volume leading to a an enhanced renal excretion of fluid and electrolytes. Within 24 hours of head-down bed rest a new steady state condition occurs with a sustained reduction of plasma volume, extracellular fluid volume, total body water, and body weight. It was the purpose of the present study to elucidate the volume homeostatic mechanisms during head-down bed rest by investigating the endocrine and renal responses to a load of sodium chloride given as either an isotonic or a hypertonic solution.  相似文献   

18.
The relation between blood pressure level and extracellular fluid volume and its distribution was studied in rats subjected to the following hypertensive stimuli--1K1C and 2K1C renal artery constriction, subtotal nephrectomy-salt and DOCA-salt. In all experimental groups the blood pressure increase was accompanied by increased extracellular fluid volume which was not always distributed proportionally between intravascular (PV) and interstitial (IFV) compartments. The blood pressure rise was further potentiated by plasma volume expansion so that the increased PV/IFV ratio was associated with a more pronounced hypertensive response (1K1C vs 2K1C, DOCA-salt vs subtotal nephrectomy-salt). However, adequate expansion of interstitial fluid is a necessary prerequisite for the hypertensive response. In DOCA-salt treated DI Brattleboro rats (lacking antidiuretic vasopressin action) plasma volume expansion per se was not accompanied by severe DOCA-salt hypertension. It is concluded that the expansion of both compartments of extracellular space, i.e. plasma volume and interstitial fluid volume, was necessary for a full development of severe hypertension. The expansion of only one of these compartments was accompanied by a mild blood pressure increase or blood pressure did not change significantly.  相似文献   

19.
The present study was designed to investigate the involvement of the renal nerve in glucocorticoid hypertension and to assess the role of the renin-angiotensin system in dexamethasone-induced hypertension. The elevated blood pressure in dexamethasone treated rats showing a significant increase in plasma renin concentration (PRC) and activity (PRA) was attenuated dose-dependently by the angiotensin I converting enzyme (ACE) inhibition. Bilateral renal denervation caused a partial decrease in the elevated blood pressure, abolished the increased PRC and PRA, and reduced the dose-dependent decrease in blood pressure with ACE inhibition in dexamethasone treated rats. Although the reduction in body weight and increases in urine volume, urinary sodium excretion and hematocrit were clearly seen following dexamethasone administration, dexamethasone-treated renal denervated rats showed the same degree of change in any of the variables as dexamethasone-treated sham-operated rats. Thus, our results indicate that the stimulation of the renin-angiotensin system through the activation of the renal nerve may be partially responsible for the dexamethasone-induced high blood pressure and, therefore, bilateral renal denervation reduces, partially but significantly, the elevated blood pressure, suggesting that the attenuation of oversecretion of renin contributes to the lowering of the blood pressure.  相似文献   

20.
The effect of salt intake and reduction of renal mass (RRM) on plasma immunoreactive atrial natriuretic peptide (iANP) levels in conscious rats was studied. Rats were divided into RRM and sham-operated groups, and then further subdivided into groups infused with 1 or 6 mEq of sodium per day. Plasma urea nitrogen increased in the groups with RRM. Plasma sodium, sodium balance, and heart rate did not differ between the sham and RRM groups. Rats with RRM maintained on 1 mEq of sodium per day did not have an elevation of water intake, arterial pressure, or plasma iANP. Rats with RRM maintained on 6 mEq of sodium per day had significantly (P less than 0.05) elevated water intake, arterial pressure, and plasma iANP. Arterial pressure and plasma iANP were correlated (r = 0.800) for rats with RRM on either 1 or 6 mEq of sodium per day. Increased plasma iANP in the RRM group on 6 mEq per day was not caused by either RRM or high sodium alone; it was an effect of RRM plus high salt intake. The increase in plasma iANP in the RRM group may be caused by the increase in arterial pressure, possibly due to an increase in extracellular fluid volume. ANP may not be responsible for the sustained increase in fractional sodium excretion observed in RRM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号