首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model mechanism was developed for the binding of a rigid multisite protein with a randomly coiled multivalent ligand. Probabilities of the formation of chain loops between sites located at given distances at the protein were calculated by an extension of the concept of ring closure in coiled chain molecules. Expressions were derived for the dependence of overall equilibrium quantities, such as the binding constant between the protein and the ligand, on intrinsic parameters such as intrinsic binding constants, number of sites at the protein and their distances and on the chain length of the polymeric ligand. A pronounced chain length dependence of the overall binding constant was predicted even at chain lengths much longer than the size of the protein. Such a dependence was previously observed for the enzyme prolyl hydroxylase which acts on polymeric substrates like (ProProGly)n. This so far unexplained feature is quantitatively described by the model mechanism which is believed to be applicable to many other interactions of biological importance.  相似文献   

2.
In this paper we examine molecular details of the interaction of bacteriophage T4-coded gene 32 protein with oligo- and polynucleotides. It is shown that the binding affinity (Koligo) of oligonucleotides of length (l) from two to eight nucleotide residues for gene 32 protein is essentially independent of base composition or sugar type. This binding also shows little dependence on salt concentration and on oligonucleotide length; even the expected statistical length factor in Koligo is not observed, suggesting that binding occurs at the end of the oligonucleotide lattice and that the oligonucleotide is not free to move across the binding site. Co-operative (contiguous) or isolated binding of gene 32 protein to polynucleotides is very different; here binding is highly salt dependent (? log Kω? log [NaCl] ~- ?7) and essentially stoichiometric at salt concentrations less than ~0.2 m (for poly(rA)). Binding becomes much weaker and the binding isotherms appear typically co-operative (sigmoid) in protein concentration at higher salt concentrations. We demonstrate, by fitting the co-operative binding isotherms to theoretical plots at various salt concentrations and also by measuring binding at very low protein binding density (ν), that the entire salt dependence of is in the intrinsic binding constant (K); the co-operativity parameter (ω) is essentially independent of salt concentration. Furthermore, by determining titration curves in the presence of salts containing a series of different anions and cations, it is shown that the major part of the salt dependence of the gene 32 protein-polynucleotide interaction is due to anion (rather than to cation) displacement effects. Binding parameters of oligonucleotides of length sufficient to bind two or more gene 32 protein monomers show behavior intermediate between the oligonucleotide and the polynucleotide binding modes. These different binding modes probably reflect different conformations of the protein; the results are analyzed to produce a preliminary molecular model of the interactions of gene 32 protein with nucleic acids in its different binding modes.  相似文献   

3.
We have mathematically analyzed ligand-induced monomerization and dimerization in a protein monomer-dimer equilibrium system, in which the monomer has one and the dimer two binding sites. These dimer sites have the same binding constants for the first ligand but may cooperatively interact when one of them is occupied by a ligand molecule. In this system, the apparent dimerization constant and the apparent molecular weight are functions of free ligand concentration, and depend on the intrinsic binding constants of the ligand molecule to the monomer and the dimer. The behavior of these functions is classified into 17 cases according to the values of the three intrinsic binding constants, and some calculated examples are shown graphically for selected parameters. The theory was also applied to D-amino acid oxidase [EC 1.4.3.3], a flavoprotein, and the pH dependence of the apparent dimerization constant and the apparent molecular weight in the presence of ligand, p-aminobenzoate, were studied theoretically using parameters obtained in our previous experiments (5).  相似文献   

4.
The kinetics of the interaction of bovine folate binding protein and folate at pH 7.4 and 5.0 were followed by measuring the changes of the intrinsic protein fluorescence intensity using the stopped-flow technique, which enables the study of reactions from the millisecond time-range. Our results immediately reject a simple one-step binding model, which requires a linear dependence of the observed rate constant on the concentration of the ligand. Thus, we are able to conclude that at pH 5.0 the interaction occurs in two steps and at pH 7.4 in three steps. Changes of fluorescence spectra at equilibrium were used to estimate the overall binding constants. Comparative studies on the binding of folate to human albumin are also reported.  相似文献   

5.
Cyanide binding to Chromatium vinosum ferricytochrome c′ has been studied to further investigate possible allosteric interactions between the subunits of this dimeric protein. Cyanide binding to C. vinosum cytochrome c′ appears to be cooperative. However, the cyanide binding reaction is unusual in that the overall affinity of cyanide increases as the concentration of cytochrome c′ decreases and that cyanide binding causes the ligated dimer to dissociate to monomers as shown by gel-filtration chromatography. Therefore, the cyanide binding properties of C. vinosum ferricytochrome c′ are complicated by a cyanide-linked dimer to monomer dissociation equilibrium of the complexed protein. The dimer to monomer dissociation constant is 20-fold smaller than that for CO linked dissociation constant of ferrocytochrome c′. Furthermore, the pH dependence of both the intrinsic equilibrium binding constant and the dimer to monomer equilibrium dissociation constant was investigated over the pH range of 7.0 to 9.2 to examine the effect of any ionizable groups. The equilibrium constants did not exhibit a significant pH dependence over this pH range.  相似文献   

6.
To investigate the functional sites on a protein and the prediction of binding sites (residues)in proteins, it is often required to identify the binding site residues at different distance threshold from protein three dimensional (3D)structures. For the study of a particular protein chain and its interaction with the ligand in complex form, researchers have to parse the output of different available tools or databases for finding binding-site residues. Here we have developed a tool for calculating amino acid contact distances in proteins at different distance threshold from the 3D-structure of the protein. For an input of protein 3D-structure, ContPro can quickly find all binding-site residues in the protein by calculating distances and also allows researchers to select the different distance threshold, protein chain and ligand of interest. Additionally, it can also parse the protein model (in case of multi model protein coordinate file)and the sequence of selected protein chain in Fasta format from the input 3D-structure. The developed tool will be useful for the identification and analysis of binding sites of proteins from 3D-structure at different distance thresholds. AVAILABILITY: IT CAN BE ACCESSED AT: http://procarb.org/contpro/  相似文献   

7.
The theory for the salt dependence of the free energy, entropy, and enthalpy of a polyelectrolyte in the PB (PB) model is extended to treat the nonspecific salt dependence of polyelectrolyte–ligand binding reactions. The salt dependence of the binding constant (K) is given by the difference in osmotic pressure terms between the react ants and the products. For simple 1-1 salts it is shown that this treatment is equivalent to the general preferential interaction model for the salt dependence of binding [C. Anderson and M. Record (1993) Journal of Physical Chemistry, Vol. 97, pp. 7116–7126]. The salt dependence, entropy, and enthalpy are compared for the PB model and one specific form of the preferential interaction coefficient model that uses counterion condensation/limiting law (LL) behavior. The PB and LL models are applied to three ligand–polyelectrolyte systems with the same net ligand charge: a model sphere–cylinder binding reaction, a drug–DNA binding reaction, and a protein–DNA binding reaction. For the small ligands both the PB and limiting law models give (ln K vs. In [salt]) slopes close in magnitude to the net ligand charge. However, the enthalpy/entropy breakdown of the salt dependence is quite different. In the PB model there are considerable contributions from electrostatic enthalpy and dielectric (water reorientation) entropy, compared to the predominant ion cratic (release) entropy in the limiting law model. The relative contributions of these three terms in the PB model depends on the ligand: for the protein, ion release entropy is the smallest contribution to the salt dependence of binding. The effect of three approximations made in the LL model is examined: These approximations are (1) the ligand behaves ideally, (2) the preferential interaction coefficient of the polyelectrolyte is unchanged upon ligand binding, and (3) the polyelectrolyte preferential interaction coefficient is given by the limiting law/counterion-condensation value. Analysis of the PB model shows that assumptions 2 and 3 break down at finite salt concentrations. For the small ligands the effects on the slope cancel, however, giving net slopes that are similar in the PB and LL models, but with a different entropy/enthalpy breakdown. For the protein ligand the errors from assumptions 2 and 3 in the LL model do not cancel. In addition, the ligand no longer behaves ideally due to its complex structure and charge distribution. Thus for the protein the slope is no longer related simply to the net ligand charge, and the PB model gives a much larger slope than the LL model. Additionally, in the PB model most of the salt dependence of the protein binding comes from the change in ligand activity, i.e. from nonspecific anion effects, in contrast to the small ligand case. While the absolute binding is sensitive to polyelectrolyte length, little length effect is seen on the salt dependence for the small ligands at 0.1M salt, and for lengths > 60 Å. Almost no DNA length dependenceis seen in the salt dependence of the protein binding, since this is determined primarily by the protein, not the DNA. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Escherichia coli ribosomal protein S1 plays a central role in initiation of protein synthesis, perhaps via participation in the binding of messenger RNA to the ribosome. S1 protein has two nucleic acid binding sites with very different properties: site I binds either single-stranded DNA or RNA, while site II binds single-stranded RNA only (Draper et al., 1977). The nucleic acid binding properties of these sites have been explored using the quenching of intrinsic protein fluorescence which results from binding of oligo- and polynucleotides, and are reported in this and the accompanying paper (Draper &; von Hippel, 1978).Site I has been studied primarily using DNA oligomers and polymers, and has been found to have the following properties. (1) The intrinsic binding constant (K) of site I for poly(dA) and poly(dC) is ~3 × 106m?1 at 0.12 m-Na+, and the site size (n, the number of nucleotide residues covered per S1 bound) is 5.1 ± 1.0 residues. (2) Binding of site I to polynucleotides is non-co-operative. (3) The K value for binding of S1 to single-stranded polynucleotides is ~103 larger than K for binding to double-stranded polynucleotides, meaning that S1 (via site I) is a potential “melting” or “double-helix destabilizing” protein. (4) The dependence of log K on log [Na+] is linear, and analysis of the data according to Record et al. (1976) shows that two basic residues in site I form charge-charge interactions with two DNA phosphates. In addition, a major part of the binding free energy of site I with the nucleic acid chain appears to involve non-electrostatic interactions. (5) Oligonucleotides bound in site II somewhat weaken the binding affinity of site I. (6) Binding affin is virtually independent of base and sugar composition of the nucleic acid ligand; in fact, the total absence of the base appears to have little effect on the binding, since the association constant for 2′-deoxyribose 5′-phosphate is approximately the same as that for dAMP or dCMP. (7) Two molecules of d(ApA) can bind to site I, suggesting the presence of two “subsites” within site I. (8) Iodide quenching experiments with S1-oligonucleotide complexes show differential exposure of tryptophans in and near the subsites of site I, depending upon whether neither, one, or both subsites are complexed with an oligonucleotide.  相似文献   

9.
In this article, we have explored the chemical interactions of tyrosine-based asymmetric urea ligands in the binding pockets of prostate specific membrane antigen (PSMA) through in silico studies. The S1 pocket of the PSMA protein offers better scope for modifications in the urea ligands to improve the binding affinity. Accordingly, tyrosine-based (S)-2-(3-((S)-1-carboxy-2-(4-(carboxymethoxy)phenyl)ethyl)ureido)pentanedioic acid (CYUE, 3) ligand was designed, synthesized and predicted to possess inhibition constant (Ki) of 55 nM with PSMA protein. The CYUE (3) ligand was further elaborated into a fluorescent diagnostic probe for detection of PSMA+ cancers. In vitro studies on human malignant cell lines such as LNCaP and PC-3 were performed to show the efficacy and specificity of the newly synthesized bio-construct. The fluorescent bio-conjugate was found to be very specific to the PSMA protein with an overall binding affinity constant (KD) of 88 nM.  相似文献   

10.
Differential scanning calorimetry (DSC) determines the enthalpy change upon protein unfolding and the melting temperature of the protein. Performing DSC of a protein in the presence of increasing concentrations of specifically-binding ligand yields a series of curves that can be fit to obtain the protein–ligand dissociation constant as done in the fluorescence-based thermal shift assay (FTSA, ThermoFluor, DSF). The enthalpy of unfolding, as directly determined by DSC, helps improving the precision of the fit. If the ligand binding is linked to protonation reactions, the intrinsic binding constant can be determined by performing the affinity determination at a series of pH values. Here, the intrinsic, pH-independent, affinity of acetazolamide binding to carbonic anhydrase (CA) II was determined. A series of high-affinity ligands binding to CAIX, an anticancer drug target, and CAII showed recognition and selectivity for the anticancer isozyme. Performing the DSC experiment in buffers of highly different enthalpies of protonation enabled to observe the ligand unbinding-linked protonation reactions and estimate the intrinsic enthalpy of binding. The heat capacity of combined unfolding and unbinding was determined by varying the ligand concentrations. Taken together, these parameters provided a detailed thermodynamic picture of the linked ligand binding and protein unfolding process.  相似文献   

11.
The study of complex macromolecular binding systems reveals that a high number of states and processes are involved in their mechanism of action, as has become more apparent with the sophistication of the experimental techniques used. The resulting information is often difficult to interpret because of the complexity of the scheme (large size and profuse interactions, including cooperative and self-assembling interactions) and the lack of transparency that this complexity introduces into the interpretation of the indexes traditionally used to describe the binding properties. In particular, cooperative behaviour can be attributed to very different causes, such as direct chemical modification of the binding sites, conformational changes in the whole structure of the macromolecule, aggregation processes between different subunits, etc. In this paper, we propose a novel approach for the analysis of the binding properties of complex macromolecular and self-assembling systems. To quantify the binding behaviour, we use the global association quotient defined as K c = [occupied sites]/([free sites] L), L being the free ligand concentration. K c can be easily related to other measures of cooperativity (such as the Hill number or the Scatchard plot) and to the free energies involved in the binding processes at each ligand concentration. In a previous work, it was shown that Kc could be decomposed as an average of equilibrium constants in two ways: intrinsic constants for Adair binding systems and elementary constants for the general case. In this study, we show that these two decompositions are particular cases of a more general expression, where the average is over partial association quotients, associated with subsystems from which the system is composed. We also show that if the system is split into different subsystems according to a binding hierarchy that starts from the lower, microscopic level and ends at the higher, aggregation level, the global association quotient can be decomposed following the hierarchical levels of macromolecular organisation. In this process, the partial association quotients of one level are expressed, in a recursive way, as a function of the partial quotients of the level that is immediately below, until the microscopic level is reached. As a result, the binding properties of very complex macromolecular systems can be analysed in detail, making the mechanistic explanation of their behaviour transparent. In addition, our approach provides a model-independent interpretation of the intrinsic equilibrium constants in terms of the elementary ones.  相似文献   

12.
13.
The location of certain amino acid sequences like repeats along the polypeptide chain is very important in the context of forming the overall shape of the protein molecule which in fact determines its function. In gram‐positive bacteria, fibronectin‐binding protein (FnBP) is one such repeat containing protein, and it is a cell wall‐attached protein responsible for various acute infections in human. Several studies on sequence, structure, and function of fibronectin‐binding regions of FnBPs were reported; however, no detailed study was carried out on the full‐length protein sequence. In the present study, we have made a thorough sequence and structure analysis on FnBP_A of Staphylococcus aureus and explored the presence of dual ligand‐binding ability of fibrinogen (fg)‐binding region and its molecular recognition processes. Multiple sequence alignment and protein‐protein docking analysis reveal the regions which are likely involved in dual ligand binding. Further analysis of docking of FnBP_A fg‐binding region and fn N‐terminal modules suggests that if the latter binds to the fg‐binding region of FnBP_A, it would inhibit the subsequent binding of fg because of steric hindrance. The sequence analysis further suggests that the abundance of disorder promoting residue glutamic acid and dual personality (both order/disorder promoting) residue threonine in tandem repeats of FnBP_A and B proteins possibly would help the molecule to undergo a conformational change while binding with fn by β‐zipper mechanism. The segment‐based power spectral analysis was carried out which helps to understand the distribution of hydrophobic residues along the sequence particularly in intrinsic disordered tandem repeats. The results presented here will help to understand the role of internal repeats and intrinsic disorder in the molecular recognition process of a pathogenic cell surface protein.  相似文献   

14.
Conformationally-linked dissociation equilibria of dimeric proteins have been examined to determine how experimentally obtainable parameters, such as the apparent dissociation constant, kD, and the apparent conformational transition constant, Kconf, are related to intrinsic subunit interaction constants, KA or KB, and intrinsic isomerization constants, K1 or k2. Limiting models are considered in which either the conformational change occurs before dissociation or in which the dissociation occurs before the conformational change, as well as a general model including both possibilities. Models are also considered in which three conformations are allowed or in which four subunits (tetramers) are involved. Simulated data for the dimer equilibria are presented to show how variation of protein concentration and variation of certain constants affect the proportion of various molecular species, the weight-average molecular weight, and the overall extent of conformational change. Methods are suggested to distinguish between the different limiting cases based upon the dependence of KD and/or Kconf on protein concentration, perturbant concentration, and temperature. It is concluded that methods used to calculate self-dissociation constants oligomeric proteins include linked isomerization reactions such that the equilibrium constant obtained should not be considered as a true subunit interaction term. Indeed, dissociation can occur under the influence of a perturbant with no change in the intrinsic affinity of the subunits but with the sole effect of the perturbant being on a linked conformational change. Additional experiments on the thermodynamics of the conformational change are required to determine the actual relationship. Depending on the complexity of the equilibria involved and the relative value of the equilibrium constants, the extent of the conformational change can vary directly with, vary inversely with, or he independent of the total protein concentration. Even when intrinsic subunit affinities are not affected by the perturbant, the extent of conformational change can vary with protein concentration. Interpretation of data from proteins which may be involved in conformationally-linked dissociation reactions, therefore, must be made with caution.  相似文献   

15.
The binding of cations of β-casein at pH 6.6 was considered previously. Available for three sodium concentiations, I = 0.04, 0.08, or 0.16 M are: [1] proton releases between I and [2] for each I, as calcium activity is increased, correlated sequences of monomer net charge, proton release, site bound calcium and protein Solvation- Models for ion binding are examined. Critical considerations are the intrinsic binding constants between hydrogen[H], calcium[Ca] and sodium[Na] ions and phosphate[P] and caiboxyIate[C] sites, and the effects of electrostatic interaction between sites as influenced by spatial fixed charge distribution, ionic strength and dielectric constant [D]. Anticipated intrinsic binding constants are kH,Po = 3 × 106, kCa,Po = 120, kNa,Po = 1, kH,Co = 7 × 104 and kCa,Co = 5.6Distributed charge models, either surface or volume, are inadequate since any reasonable monomer size yields fixed charge densities requiring kH,Po and kCa,Co which are too low when the maximum in D is 75. Also, with increasing calcium binding, calculated proton release is only 0.4 to 0.5 of that observed.Discrete charge models accept anticipated ko and yield calculated sequences of calcium binding and proton release which are in good agreement with those observed provided that: (1) using the known amino acid sequence of the phosphate-containing acidic peptide portion of the molecule, pep tide fixed charge is distributed at the lowest I so as to minimize electrostatic free energy; (2) in the region of fixed charge, D is approximately 5; (3) the distances between peptide fixed charges decrease with increasing ionic strength or calcium binding and (4) while protein is in solution, the acidic peptide and the remainder of the molecule are essentially electrostatically independent.  相似文献   

16.
Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.  相似文献   

17.
Multivariate curve resolution with alternating least squares (MCR-ALS) was applied to voltammetric data obtained in the analysis of the competitive binding of glutathione (GSH) and phytochelatins [(γGlu-Cys)n-Gly, PCn, n = 2-5] by Cd2+. The displacements between ligands and chain length influence on the competitive binding of PCn toward Cd2+ were investigated. The analysis of the resulting pure voltammograms and concentration profiles of the resolved components suggests that ligands containing more thiol groups are able to displace the shortest chain ligands from their metal complexes, whereas the opposite does not happen. However, when the length of the chain surpasses that of PC3, the binding capacity of the molecule still increases (i.e., it can bind more metal ions), but the position and shape of the voltammetric signals practically rest unchanged. This suggests that at this level, the stability of metal binding could depend more on the nature of the binding sites separately than on the quantity of the sites (i.e., the chain length).  相似文献   

18.
P J Hogg  P E Reilly  D J Winzor 《Biochemistry》1987,26(7):1867-1873
Theoretical consideration is given to the interaction of a bivalent ligand with particulate receptor sites, not only from the viewpoint of quantitatively describing the binding behavior but also from that of the kinetics of ligand release upon infinite dilution of a receptor-ligand mixture. In the latter regard, a general expression is derived that describes the time dependence of the amount of ligand bound as a function of two rate constants for the stepwise dissociation of cross-linked ligand-receptor complex and a thermodynamic parameter expressing the initial ratio of singly linked to doubly linked ligand-receptor complexes. An experimental study of the interaction between Sephadex and concanavalin A is then used to illustrate application of this recommended theoretical approach for characterizing the binding behavior and dissociation kinetics of a bivalent ligand for a system in which all ligand-receptor interactions may be described by a single intrinsic association constant. Published results on the interaction of phosphorylase b with butylagarose are also shown to comply with this simplest model of the bivalent ligand hypothesis; but those for the interaction between immunoglobulin G (IgG) dimers and Fc receptors require modification of the model by incorporation of different intrinsic association constants for the successive binding of receptor sites to the bivalent ligand. These results emphasize the need to consider ligand bivalency as a potential phenomenon in studies of interactions between protein ligands and particulate receptors and illustrate procedures by which the effects of ligand bivalency may be identified and characterized.  相似文献   

19.
Myoglobin is a cytoplasmic hemoprotein, expressed solely in cardiac myocytes and oxidative skeletal muscle fibers, that reversibly binds O2 by its heme residue. Myoglobin is an essential oxygen-storage hemoprotein capable of facilitating oxygen transport and modulating nitric oxide homeostasis within cardiac and skeletal myocytes. Functionally, myoglobin is well accepted as an O2- storage protein in muscle, capable of releasing O2 during periods of hypoxia or anoxia. There is no evidence available regarding active sites, ligand binding sites, antigenic determinants and the ASA value of myoglobin in Channa striata. We further document the predicted active sites in the structural model with solvent exposed ASA residues. During this study, the model was built by CPH program and validated through PROCHECK, Verify 3D, ERRAT and ProSA for reliability. The active sites were predicted in the model with further ASA analysis of active site residues. The discussed information thus provides the predicted active sites, ligand binding sites, antigenic determinants and ASA values of myoglobin model in Channa striata.  相似文献   

20.
Wzz is a membrane protein that determines the chain length distribution of the O-antigen lipopolysaccharide by an unknown mechanism. Wzz proteins consist of two transmembrane helices separated by a large periplasmic loop. The periplasmic loop of Escherichia coli K-12 Wzz (244 amino acids from K65 to A308) was purified and found to be a monomer with an extended conformation, as determined by gel filtration chromatography and analytical ultracentrifugation. Circular dichroism showed that the loop has a 60% helical content. The Wzz periplasmic loop also contains three regions with predicted coiled coils. To probe the function of the predicted coiled coils, we constructed amino acid replacement mutants of the E. coli K-12 Wzz protein, which were designed so that the coiled coils could be separate without compromising the helicity of the individual molecules. Mutations in one of the regions, spanning amino acids 108 to 130 (region I), were associated with a partial defect in O-antigen chain length distribution, while mutants with mutations in the region spanning amino acids 209 to 223 (region III) did not have an apparent functional defect. In contrast, mutations in the region spanning amino acids 153 to 173 (region II) eliminated the Wzz function. This phenotype was associated with protein instability, most likely due to conformational changes caused by the amino acid replacements, which was confirmed by limited trypsin proteolysis. Additional mutagenesis based on a three-dimensional model of region I demonstrated that the amino acids implicated in function are all located at the same face of a predicted α-helix, suggesting that a coiled coil actually does not exist in this region. Together, our results suggest that the regions predicted to be coiled coils are important for Wzz function because they maintain the native conformation of the protein, although the existence of coiled coils could not be demonstrated experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号