首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner.  相似文献   

2.
The main goal of many proteomics experiments is an accurate and rapid quantification and identification of regulated proteins in complex biological samples. The bottleneck in quantitative proteomics remains the availability of efficient software to evaluate and quantify the tremendous amount of mass spectral data acquired during a proteomics project. A new software suite, ICPLQuant, has been developed to accurately quantify isotope‐coded protein label (ICPL)‐labeled peptides on the MS level during LC‐MALDI and peptide mass fingerprint experiments. The tool is able to generate a list of differentially regulated peptide precursors for subsequent MS/MS experiments, minimizing time‐consuming acquisition and interpretation of MS/MS data. ICPLQuant is based on two independent units. Unit 1 performs ICPL multiplex detection and quantification and proposes peptides to be identified by MS/MS. Unit 2 combines MASCOT MS/MS protein identification with the quantitative data and produces a protein/peptide list with all the relevant information accessible for further data mining. The accuracy of quantification, selection of peptides for MS/MS‐identification and the automated output of a protein list of regulated proteins are demonstrated by the comparative analysis of four different mixtures of three proteins (Ovalbumin, Horseradish Peroxidase and Rabbit Albumin) spiked into the complex protein background of the DGPF Proteome Marker.  相似文献   

3.
Modern nano‐HPLC systems are capable of extremely precise control of solvent gradients, allowing high‐resolution separation of peptides. Most proteomics laboratories use a simple linear analytical gradient for nano‐LC‐MS/MS experiments, though recent evidence indicates that optimized non‐linear gradients result in increased peptide and protein identifications from cell lysates. In concurrent work, we examined non‐linear gradients for the analysis of samples fractionated at the peptide level, where the distribution of peptide retention times often varies by fraction. We hypothesized that greater coverage of these samples could be achieved using per‐fraction optimized gradients. We demonstrate that the optimized gradients improve the distribution of peptides throughout the analysis. Using previous generation MS instrumentation, a considerable gain in peptide and protein identifications can be realized. With current MS platforms that have faster electronics and achieve shorter duty cycle, the improvement in identifications is smaller. Our gradient optimization method has been implemented in a simple graphical tool (GOAT) that is MS‐vendor independent, does not require peptide ID input, and is freely available for non‐commercial use at http://proteomics.swmed.edu/goat/  相似文献   

4.
Many research questions in fields such as personalized medicine, drug screens or systems biology depend on obtaining consistent and quantitatively accurate proteomics data from many samples. SWATH‐MS is a specific variant of data‐independent acquisition (DIA) methods and is emerging as a technology that combines deep proteome coverage capabilities with quantitative consistency and accuracy. In a SWATH‐MS measurement, all ionized peptides of a given sample that fall within a specified mass range are fragmented in a systematic and unbiased fashion using rather large precursor isolation windows. To analyse SWATH‐MS data, a strategy based on peptide‐centric scoring has been established, which typically requires prior knowledge about the chromatographic and mass spectrometric behaviour of peptides of interest in the form of spectral libraries and peptide query parameters. This tutorial provides guidelines on how to set up and plan a SWATH‐MS experiment, how to perform the mass spectrometric measurement and how to analyse SWATH‐MS data using peptide‐centric scoring. Furthermore, concepts on how to improve SWATH‐MS data acquisition, potential trade‐offs of parameter settings and alternative data analysis strategies are discussed.  相似文献   

5.
Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well‐studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor‐based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K‐nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20–60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.  相似文献   

6.
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases).  相似文献   

7.
Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross‐allergenicity described between soy and milk proteins. We have previously identified several cross‐reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1‐casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α‐casein‐specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross‐reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI‐TOF MS analysis. On a second approach, the peptide mixture was resolved by RP‐HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI‐TOF MS. This novel MS based approach led us to identify and characterize four peptides on α‐casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross‐reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross‐reactivity, to further develop new and more effective vaccines for food allergy.  相似文献   

8.
MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off‐gel IEF (OG‐IEF) and high pH RP (Hp‐RP) column chromatography have both been successfully utilized as a first‐dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12‐fraction replicate analysis, Hp‐RP resulted in more peptides and proteins identified than OG‐IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp‐RP. This leads to a more uniform distribution of total and unique peptides for Hp‐RP across all fractions collected. These results suggest that fractionation by Hp‐RP over OG‐IEF is the better choice for typical complex proteome analysis.  相似文献   

9.
High‐resolution MS/MS spectra of peptides can be deisotoped to identify monoisotopic masses of peptide fragments. The use of such masses should improve protein identification rates. However, deisotoping is not universally used and its benefits have not been fully explored. Here, MS2‐Deisotoper, a tool for use prior to database search, is used to identify monoisotopic peaks in centroided MS/MS spectra. MS2‐Deisotoper works by comparing the mass and relative intensity of each peptide fragment peak to every other peak of greater mass, and by applying a set of rules concerning mass and intensity differences. After comprehensive parameter optimization, it is shown that MS2‐Deisotoper can improve the number of peptide spectrum matches (PSMs) identified by up to 8.2% and proteins by up to 2.8%. It is effective with SILAC and non‐SILAC MS/MS data. The identification of unique peptide sequences is also improved, increasing the number of human proteoforms by 3.7%. Detailed investigation of results shows that deisotoping increases Mascot ion scores, improves FDR estimation for PSMs, and leads to greater protein sequence coverage. At a peptide level, it is found that the efficacy of deisotoping is affected by peptide mass and charge. MS2‐Deisotoper can be used via a user interface or as a command‐line tool.  相似文献   

10.
MHC class I (MHC‐I)‐bound ligands play a pivotal role in CD8 T cell immunity and are hence of major interest in understanding and designing immunotherapies. One of the most commonly utilized approaches for detecting MHC ligands is LC‐MS/MS. Unfortunately, the effectiveness of current algorithms to identify MHC ligands from LC‐MS/MS data is limited because the search algorithms used were originally developed for proteomics approaches detecting tryptic peptides. Consequently, the analysis often results in inflated false discovery rate (FDR) statistics and an overall decrease in the number of peptides that pass FDR filters. Andreatta et al. describe a new scoring tool (MS‐rescue) for peptides from MHC‐I immunopeptidome datasets. MS‐rescue incorporates the existence of MHC‐I peptide motifs to rescore peptides from ligandome data. The tool is demonstrated here using peptides assigned from LC‐MS/MS data with PEAKs software but can be deployed on data from any search algorithm. This new approach increased the number of peptides identified by up to 20–30% and promises to aid the discovery of novel MHC‐I ligands with immunotherapeutic potential.  相似文献   

11.
LC‐ESI/MS/MS‐based shotgun proteomics is currently the most commonly used approach for the identification and quantification of proteins in large‐scale studies of biomarker discovery. In the past several years, the shotgun proteomics technologies have been refined toward further enhancement of proteome coverage. In the complex series of protocols involved in shotgun proteomics, however, loss of proteolytic peptides during the lyophilization step prior to the LC/MS/MS injection has been relatively neglected despite the fact that the dissolution of the hydrophobic peptides in lyophilized samples is difficult in 0.05–0.1% TFA or formic acid, causing substantial loss of precious peptide samples. In order to prevent the loss of peptide samples during this step, we devised a new protocol using Invitrosol (IVS), a commercially available surfactant compatible with ESI‐MS; by dissolving the lyophilized peptides in IVS, we show improved recovery of hydrophobic peptides, leading to enhanced coverage of proteome. Thus, the use of IVS in the recovery step of lyophilized peptides will help the shotgun proteomics analysis by expanding the proteome coverage, which would significantly promote the discovery and development of new diagnostic markers and therapeutic targets.  相似文献   

12.
The peptide‐based quantitation accuracy and precision of LC‐ESI (QSTAR Elite) and LC‐MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ‐labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC‐MALDI spectra. The average protein sequence coverages for LC‐ESI and LC‐MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ‐based expression ratios determined by ProteinPilot from the 57 467 ESI‐MS/MS and 26 085 MALDI‐MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7–6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC‐ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC‐MALDI iTRAQ ratios were rejected. Re‐analysis of an archived LC‐MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS‐based peptide quantitation performance of offline LC‐MALDI was comparable with on‐line LC‐ESI, which required threefold less time. However, offline LC‐MALDI allows the re‐analysis of archived HPLC‐separated samples.  相似文献   

13.
Mass spectrometers equipped with matrix‐assisted laser desorption/ionization (MALDI‐MS) require frequent multipoint calibration to obtain good mass accuracy over a wide mass range and across large numbers of samples. In this study, we introduce a new synthetic peptide mass calibration standard termed PAS‐cal tailored for MALDI‐MS based bottom‐up proteomics. This standard consists of 30 peptides between 8 and 37 amino acids long and each constructed to contain repetitive sequences of Pro, Ala and Ser as well as one C‐terminal arginine residue. MALDI spectra thus cover a mass range between 750 and 3200 m/z in MS mode and between 100 and 3200 m/z in MS/MS mode. Our results show that multipoint calibration of MS spectra using PAS‐cal peptides compares well to current commercial reagents for protein identification by PMF. Calibration of tandem mass spectra from LC‐MALDI experiments using the longest peptide, PAS‐cal37, resulted in smaller fragment ion mass errors, more matching fragment ions and more protein and peptide identifications compared to commercial standards, making the PAS‐cal standard generically useful for bottom‐up proteomics.  相似文献   

14.
We describe a cyclic on‐column procedure for the sequential degradation of complex O‐glycans on proteins or peptides by periodate oxidation of sugars and cleavage of oxidation products by elimination. Desialylated glycoproteins were immobilized to alkali‐stable, reversed‐phase Poros 20 beads followed by two degradation cycles and the eluted apoproteins were either separated by SDS gel electrophoresis or digested with trypsin prior to LC/ESI‐MS. We demonstrate on the peptide and protein level that even complex glycan moieties are removed under mild conditions with only minimal effects on structural integrity of the peptide core by fragmentation, dehydration or by racemization of the Lys/Arg residues. The protocol is applicable on gel‐immobilized glycoproteins after SDS gel electrophoresis. Conversion of O‐glycoproteins into their corresponding apoproteins should result in facilitated accessibility of tryptic cleavage sites, increase the numbers of peptide fragments, and accordingly enhance protein coverage and identification rates within the subproteome of mucin‐type O‐glycoproteins.  相似文献   

15.
The relative amount of high mannose structures within an N‐glycomic pool differs from one source to another, but quite often it predominates over the larger size complex type structures carrying biologically important glyco‐epitopes. An efficient method to separate these two classes of N‐glycans would significantly aid in detecting the lower abundant components by MS. Capitalizing on an initial observation that only high mannose type structures were recovered in the flow‐through fraction when peptide‐N‐glycosidase F digested peptides were passed through a C18 cartridge in 0.1% formic acid, we demonstrated here that native complex type N‐glycans can be retained by C18 cartridge and to be efficiently separated from both the smaller high mannose type structures, as well as de‐N‐glycosylated peptides by stepwise elution with increasing ACN concentration. The weak retention of the largely hydrophilic N‐glycans on C18 resin is dependent not only on size but also increased by the presence of α6‐fucosylation. This was shown by comparing the resulting N‐glycomic profiles of the washed and low‐ACN eluted fractions derived from both a human cancer cell line and an insect cell line.  相似文献   

16.
Asparagine‐linked glycosylation is a common post‐translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site‐specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH‐MS to enable automated measurement of site‐specific occupancy at many glycosylation sites. Deglycosylation with peptide‐endoglycosidase H, leaving a remnant N‐acetylglucosamine on asparagines previously carrying high‐mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide‐N‐glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site‐specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site‐specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.  相似文献   

17.
In this study, an on‐plate‐selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless‐steel plate, then modified with 4‐mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI‐MS simply by deposition of 2,5‐dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on‐plate strategy promising for online enrichment of glycopeptides, which could be applied in high‐throughput proteome research.  相似文献   

18.
The identification and characterization of peptides from MS/MS data represents a critical aspect of proteomics. It has been the subject of extensive research in bioinformatics resulting in the generation of a fair number of identification software tools. Most often, only one program with a specific and unvarying set of parameters is selected for identifying proteins. Hence, a significant proportion of the experimental spectra do not match the peptide sequences in the screened database due to inappropriate parameters or scoring schemes. The Swiss protein identification toolbox (swissPIT) project provides the scientific community with an expandable multitool platform for automated in‐depth analysis of MS data also able to handle data from high‐throughput experiments. With swissPIT many problems have been solved: The missing standards for input and output formats (A), creation of analysis workflows (B), unified result visualization (C), and simplicity of the user interface (D). Currently, swissPIT supports four different programs implementing two different search strategies to identify MS/MS spectra. Conceived to handle the calculation‐intensive needs of each of the programs, swissPIT uses the distributed resources of a Swiss‐wide computer Grid (http://www.swing‐grid.ch).  相似文献   

19.
Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self‐assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO‐binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO‐binding peptide, 125 spot‐synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO‐binding sites were found as 6‐mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles. Biotechnol. Bioeng. 2010;106: 845–851. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of ‘one‐bead‐one‐peptide’ combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4‐hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc‐Asp[2‐phenylisopropyl (OPp)]‐OH to Ala‐Gly‐oxymethylbenzamide‐ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N‐terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N‐Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one‐bead‐one‐cyclic depsipeptide libraries that can be easily open for its sequencing by matrix‐assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号