首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 13C nmr chemical shifts of the common amino acid residues were measured in D2O solutions of the linear tetrapeptides H-Gly-Gly-X-L -Ala-OH. For Asp, Glu, Lys, Tyr and His, the titration shifts arising from the ionization of te amino acid side chains were also obtained. These data are compared with the corresponding 13C chemical shifts in the protected tetrapeptides CF3CO-Gly-Gly-X-L -Ala-OCH3, the linear pentapeptides H-Gly-Gly-X-Gly-Gly-OH, and the free amino acids. On this basism the selection of suitable “random coil” 13C chemical shifts for conformational studies of polypeptides chain is discussed.  相似文献   

2.
For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For HN, N and Cα the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.  相似文献   

3.

A total of 37 dose‐response experiments with essential amino acids performed with rainbow trout and broiler chicken were re‐evaluated with different mathematical approaches: an exponential model, a four‐parameter logistic function, the saturation kinetics model and the broken line approach. The different approaches were compared both with regard to the goodness of fit (r2 and sy.x) and with regard to the allowances which were derived regarding the optimal amino acid level in the diet. The experimental design, particularly the chosen range in dietary amino acid concentration was found to be important for the comparison of models. Amongst the non‐linear models, the four‐parameter logistic function and the saturation kinetics model appeared superior to the exponential approach, when the range in dietary amino acid concentration was very wide and included both a severely deficient basal level and a level that exceeded the needs of the animal by approximately the factor 2. In these cases, allowances derived from individual experiments were considerably different depending on the model. The allowances based on the exponential and the saturation kinetics approach were 27.7 and 20.7 g lysine/kg DM and 8.0 and 6.3 g methionine/kg DM, respectively, for rainbow trout. For other amino acids studied in rainbow trout the difference due to model was less. Consequently, the predicted ‘ideal protein’ for rainbow trout was considerably different depending on the model used. The maximum deviation found in different experiments with broiler chicken for the exponential vs. the saturation kinetics approach was 13.0 and 9.7 g lysine/kg and 11.4 and 8.2 g sulfur‐containing amino acids/kg, respectively. However, the more restricted the range in dietary concentration was, the lesser became the differences between the different non‐linear models. No definite recommendation can therefore be extracted regarding the most suitable, generally applicable mathematical model.  相似文献   

4.
Abstract Roots of sterile-grown, intact 6-day-old seedlings of Ricinus communis possess at least two independent active amino acid uptake systems, one for neutral and one for basic amino acids. The kinetics of uptake of L-proline and L-arginine, which were taken as representative substrates for the two systems, are biphasic. At low concentrations (0.01–0.5 mol m?3) Michaelis -Menten kinetics prevail, changing to a linear concentration dependence at higher substrate concentrations (1–50 mol m?3). L-glutamate uptake velocity is linear over the whole substrate concentration range. For comparison the uptake kinetics of nitrate and ammonium were determined as well as interactions among the different nitrogen sources. The Km value for nitrate uptake was 0.4 mol m?3, and for ammonium 0.1 mol m?3. The uptake capacity for nitrate or ammonium was approximately the same as for amino acids. The interaction between the uptake systems for organic and inorganic nitrogen is small. Two hypotheses for the physiological significance of amino acid uptake by roots were considered: (i) Uptake of amino acids from the soil-determination of amino acids in soil and in soil water indicates that they might contribute 15–25% to the nitrogen nutrition of the plant. (ii) Amino acid uptake systems of root cells serve primarily as retrieval of amino acids delivered from the phloem- it was found that 14C L-glutamine, which was delivered to the cotyledon and transported to the root via the phloem, was not lost by the roots, whereas it appeared in the bathing medium if L-glutamine was applied externally to the root to compete for the uptake sites; this suggests that an apoplastic pool of amino acids in the root exists due to their efflux from the phloem.  相似文献   

5.
Summary Accumulation of neutral amino acids by isolated chick epithelial cells has been studied and the results discussed in terms of the ion gradient model, and a model invoking a direct input of metabolic energy. The cells establish four- to eightfold concentration gradients of amino acids at an extracellular concentration of 1mm. The accumulation is sodium-dependent, inhibited by high extracellular potassium concentrations, and is sensitive to a variety of metabolic inhibitors. Also, amino acid uptake is depressed by actively transported sugars, and certain other amino acids, and is stimulated by phloridzin.Cells equilibrated with valine and loaded with 30 to 40mm intracellular sodium begin immediately to actively accumulate valine when suddenly introduced to media containing 20mm sodium. The cells establish a threefold gradient of amino acid during the interval when intracellular sodium is higher than extracellular sodium.Amino acid accumulation and22Na efflux were monitored simultaneously in cells treated with phloridzin. While phloridzin causes a 30% stimulation of amino acid uptake, no variation in the rate of22Na efflux or the steady-state level of22Na maintained by the cells can be detected. Similarly, either 2.5mm glucose or 2.5mm 3-O-methylglucose cause approximately a 50% inhibition of 1mm valine uptake, but no detectable change in steady-state cellular22Na content. Several aspects of the data seem inconsistent with concepts embodied in the ion gradient hypothesis, and it is suggested that a directly energized transport mechanism can better accommodate all of the data.  相似文献   

6.
A topological model for the haemolysin translocator protein HlyD   总被引:8,自引:0,他引:8  
Summary A topological model for HlyD is proposed that is based on results obtained with gene fusions of lacZ and phoA to hlyD. Active H1yD-LacZ fusion proteins were only generated when lacZ was fused to hlyD. within the first 180 by (60 amino acids). H1yD-PhoA proteins exhibiting alkaline phosphatase (AP) activity were obtained when phoA was inserted into hlyD. between nucleotides 262 (behind amino acid position 87) and 1405 (behind amino acid position 468, only 10 amino acids away from the C-terminus of HlyD Active insertions of phoA into the middle region of hlyD. were not observed on in vivo transposition but such fusions exhibiting AP activity could be constructed by in vitro techniques. A fusion protein that carried the PhoA part close to the C-terminal end of HlyD proved to be the most stable HlyD-PhoA fusion protein. In contrast to the other, rather unstable, HlyD-PhoA+ fusions, no proteolytic degradation product of this HlyD-PhoA protein was observed and nearly all the alkaline phosphatase activity was membrane bound. Protease accessibility and cell fractionation experiments indicated that the alkaline phosphatase moiety of this fusion protein was located in the periplasm as for all other HlyD-PhoA+ proteins. These data and computer-assisted predictions suggest a topological model for HlyD with the N-terminal 60 amino acids located in the cytoplasm, a single transmembrane segment from amino acids 60 to 80 and a large periplasmic region extending from amino acid 80 to the C-terminus. Neither the HlyD fusion proteins obtained nor a mutant HlyD protein that had lost the last 10 amino acids from the C-terminus of HlyD exhibited translocator activity for HlyA or other reporter proteins carrying the HlyA signal sequence. The C-terminal 10 amino acids of HlyD showed significant similarity with the corresponding sequences of other HlyD-related proteins involved in protein secretion.  相似文献   

7.
The H+ cotransport of neutral and acidic amino acids induces transient depolarizations of oat coleoptile (Avena sativa L., var Victory) plasma membranes. The depolarizations, which are completed within 1 or 2 minutes, are followed by repolarizations that are nearly completed within another 2 or 3 minutes. Cysteine induced a two-phased alkalinization of the tissue free space during the electrical changes. The first phase was a rapid, linear increase in pH that coincided with the depolarization; the second phase was a slower, also linear, increase in pH that coincided with the repolarization. Reacidification did not occur until cysteine was withdrawn. Five other acidic, basic, and neutral amino acids also induced persistent alkalinization of the free space.

The notable features of these measurements are that free-space pH was measured more directly than previously, that pH changes corresponded in time to the electrical potential changes, and that reacidification of the free space did not occur. The latter observation indicates that net H+ efflux did not occur during repolarization and that the repolarizing current was carried by some other ion. We propose that repolarization could have depended upon depolarization-induced changes in passive K+ fluxes combined with an enhanced H+ extrusion that increased until it equaled, but did not exceed, the enhanced influx of H+.

In support of the feasibility of our hypothesis, we present a quantitative simulation model for cotransport. The simulation model also provides an interpretation of the unique electrical effects of histidine and the basic amino acids. In addition, the model focuses attention upon the difficulties of interpreting H+-anion cotransport.

  相似文献   

8.
After Stimulation with ATP and in the absence of divalent cations, isolated barley mesophyll vacuoles exhibited massive solute fluxes across the tonoplast, measured either as efflux of endogenous solutes or as uptake of radioactive-labeled compounds. Transported solutes were ions (particularly K+, NO 3 , Cl) and amino acids (for example, ala, arg, asp, gln, leu, met). Addition of Mg2+in excess of added ATP inhibited fluxes of inorganic ions and of positively charged amino acids, but not, or to a smaller extent, those of neutral amino acids. Thus, Mg2+ increased the specificity of the carrier for amino acids such as alanine and glutamine. All ATP-stimulated transport processes were sensitive towards inhibition by lipophilic amino acids, for example by leucine and phenylalanine. After stimulation with sulfhydryl reagents, the inhibitory properties of Mg2+ and lipophilic amino acids were lost. These data concur with the hypothesis of a single transporter which exhibits a channel-like structure with a low degree of substrate selectivity in the absence of Mg2+, and which functions as a neutral amino acid carrier in the presence of Mg2+.We are grateful to Frau Claudia Dürr for excellent technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 176 of the Bayerische-Julius-Maximilians-Universität Würzburg.  相似文献   

9.
Summary In this study we report on the 1H, 13C and 15N NMR chemical shifts for the random coil state and nearest-neighbor sequence effects measured from the protected linear hexapeptide Gly-Gly-X-Y-Gly-Gly (where X and Y are any of the 20 common amino acids). We present data for a set of 40 peptides (of the possible 400) including Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly, measured under identical aqueous conditions. Because all spectra were collected under identical experimental conditions, the data from the Gly-Gly-X-Ala-Gly-Gly series provide a complete and internally consistent set of 1H, 13C and 15N random coil chemical shifts for all 20 common amino acids. In addition, studies were also conducted into nearest-neighbor effects on the random coil shift arising from a variety of X and Y positional substitutions. Comparisons between the chemical shift measurements obtained from Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly reveal significant systematic shift differences arising from the presence of proline in the peptide sequence. Similarly, measurements of the chemical shift changes occurring for both alanine and proline (i.e., the residues in the Y position) are found to depend strougly on the type of amino acid substituted into the X position. These data lend support to the hypothesis that sequence effects play a significant role in determining peptide and protein chemical shifts.  相似文献   

10.
Using spot-synthesized peptide arrays, a functional peptide can be screened as a high-binding peptide for a target molecule. We have developed a rational screening method for functional peptides by analyzing the physicochemical rules of high-binding peptide sequences. To screen the peptides simply and strategically, we prepared an exhaustive 4-mer peptide library consisting of 256 peptides (44 = 256) characterized by four physicochemical groups of 20 amino acids: Group 1, non-charged hydrophobic amino acids; Group 2, non-charged hydrophilic amino acids; Group 3, positive-charged hydrophilic amino acids; Group 4, negative-charged hydrophilic amino acids. First, our previous screening data from cell adhesion, bile acid-binding, and nanoparticle-binding peptides were applied to the four-category analysis, and target-specific physicochemical characteristics were obtained. We then prepared an exhaustive 4-mer peptide library using these four physicochemical groups, and screened for high-binding peptides that bind model proteins interleukin-2 and IgG. We obtained individual physicochemical rules for high-binding peptides: group 1 or 4 amino acids in position (P) 1, group 1 in P2 and P4 for IL-2, and group 2 and 3 amino acids at all position for IgG. Therefore, this system, which employs the use of a simple and strategic peptide library, will be useful in the development of functional peptides.  相似文献   

11.
M. W. Fowler 《Planta》1973,112(3):235-242
Summary 14C from [2-14C] acetate was found to be incorporated into soluble and protein amino acids in substantial amounts by bean root apices. The 14C was spread through a wide range of amino acids in both these fractions. Glutamic acid was found to be heavily labelled with 14C in both soluble and protein amino acid fractions. The data are discussed in relation to present ideas on transport and utilization of amino acids in root systems.  相似文献   

12.
L. Pogliani 《Amino acids》1995,9(3):217-228
Summary The linear combinations of connectivity indices method (LCCI) is here employed to model the water solubility and activity of 19 natural amino acids. Starting with the molecular connectivity indices, reciprocal and supra molecular connectivity indices are designed to model the solubility and activity spaces of the natural amino acids. The reciprocal and supra molecular reciprocal connectivity indices have been obtained following the variability of the connectivity indices along solubility space of the natural amino acids. A linear combination of the reciprocals of the connectivity indices (LCRCI) showed a satisfactory modelling of the solubility and activity space while a model based on the LCRCI together with the introduction of supra reciprocal molecular connectivity indices for Pro, Ser and Arg achieved an optimal modelling of the solubility and activity space of the natural amino acids. Because the properties are a consequence of the structure (Kier and Hall, 1986)  相似文献   

13.
The uptake of L-leucine and L-lysine into vascular smooth muscle cells cultured from the aortas of rats has been investigated. Both amino acids are taken up by saturable systems that are independent of the presence of a ·Na+ gradient and can be stimulated in trans by neutral bulky amino acids for leucine and cationic amino acids for lysine. Leucine uptake is inhibited competitively in cis by several neutral amino acids, whereas lysine uptake is inhibited strongly by other cationic amino acids but also significantly by neutral amino acids such as leucine. The leucine inhibition is noncompetitive. Cells preloaded with leucine and lysine could also export these amino acids and the rate of efflux was stimulated by the presence of appropriate amino acids in trans. These data are all consistent with leucine being transported largely if not entirely by System L and lysine by the System y+ transporter. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Summary H atoms have been created by the photolysis of H2S. These then initiated reactions in mixtures involving acetylene-ammonia-water and ethylene-ammonia-water. In the case of the acetylene system, the products consisted of two amino acids, ethylene and a group of primarily cyclic thio-compounds, but no free sulfur. In the case of the ethylene systems, seven amino acids, including an aromatic one, ethane, free sulfur, and a group of solely linear thio-compounds were produced. Total quantum yields for the production of amino acids were ~ 3 × 10–5 and ~ 2 × 10–4 with ethylene and acetylene respectively as carbon substrates. Consideration is given of the mechanism for the formation of some of the products and implications regarding planetary atmosphere chemistry, particularly that of Jupiter, are explored.  相似文献   

15.
The fluorometric amino acid analyzer based on fluorescamine has been utilized for quantitative determination of Nα-methylamino acids. N-Chlorosuccinimide (1 × 10?3m in 0.05 m HCl) was continuously introduced into the column eluate to convert Nα-methylamino acids to fluorescamine-sensitive methylamine. As little as 100 pmoles of l-N-methylalanine was detectable with a linear fluorescence response up to 10.0 nmoles. Distinction of primary and secondary amino acids was achieved by carrying out duplicate analyses with and without the introduction of the N-chlorosuccinimide solution.  相似文献   

16.
Amino acid release from roots of sterile and non-sterile, solution-grown, 7-, 21- and 60-days-old forage rape plants (Brassica napus L.), was measured over periods of up to 6 hours. With sterile plants, release of amino acids into a fixed volume of collection medium (6, 12, 70 mL) was concentration-limited, giving rise to similar convex accumulation profiles for individual acids. In contrast, amino acid accumulation in continuously circulating collection medium was not concentration limited, giving a linear accumulation pattern. The compositions of accumulating amino acids, which were similar to those measured in root extracts, did not change significantly. However, the proportions of ALA, GABA, GLU and ILE in both root extracts and root-derived amino acids increased as plants aged. Older plants released more amino acids per plant, while younger plants released more amino acids g-1 root DW. Using non-sterile plants, the patterns of change in amino acid concentration and composition in the collection medium were completely different from those determined with sterile plants. In general, with 7-days-old plants, and 60-days-old plants that had recently become non-sterile, an initial rise in the concentration of all acids was followed by a fall to low levels. The loss of amino acids was apparently due to microbial consumption. Individual amino acids attained maximum concentration at different times during the collection process. This is attributed mainly to concentration-dependent differential assimilation of amino acids, since those with the highest initial concentrations, the major components of the mixtures released from roots, declined the earliest. When calculated rates of amino acid release from roots (Rr) and microbial consumption of amino acids (Rc) were compared (for 7-days-old plants), the highest ratios of Rc/Rr were found for ASN, ARG, GLU, GLN, and LYS. This suggests a degree of selectivity for glutamate and nitrogen-rich acids on the part of the consuming micro-organisms. With 21-days old plants and 60-days old plants grown entirely under non-sterile conditions, fluctuations in amino acid concentration were similar for all acids.  相似文献   

17.
Studies in different ecosystems have shown that plants take up intact amino acids directly but little is known about the influence of free amino acid concentrations in the soil on this process. We investigated the effect of three different soil amino acid N concentrations (0.025, 0.13 and 2.5 μg N g?1 soil) on direct uptake of four dual labelled (15N, 13C) amino acids (glycine, tyrosine, lysine, valine) in a greenhouse experiment using Anthoxantum odoratum as a model plant.Our results revealed that 8–45% of applied 15N was incorporated into plant root and shoot tissue 48 h after labelling. Additional 13C enrichment showed that 2–70% of this incorporated 15N was taken up as intact amino acid. Total 15N uptake and 15N uptake as intact amino acids were significantly affected by soil amino acid N concentrations and significantly differed between the four amino acids tested.We found a positive effect of soil amino acid concentrations on uptake of mineralized 15N relative to amino acid concentrations for all amino acids which was presumably due to higher diffusion rates of mineralized tracer to the root surface. However, intact amino acid uptake relative to amino acid concentrations as well as the proportion of total 15N taken up directly decreased with increasing soil amino acid N concentrations for all amino acids, irrespective of their microbial degradability. This effect is most likely controlled by the mineral N concentration in soil and perhaps in plants which inhibits direct amino acids uptake.Overall, we conclude that plant internal regulation of amino acid uptake controlled by mineral N is the main mechanism determining direct uptake of amino acids and thus a lower contribution of intact amino acid uptake to the plants N nutrition has to be expected for higher amino acid concentrations accompanied by mineralization in soil.  相似文献   

18.
Desulfobacterium vacuolatum strain IbRM was able to grow using casamino acids as a source of carbon, energy and nitrogen. Growth was accompanied by utilization of several amino acids and sulfide production. Proline and glutamate were used preferentially and to the greatest extent. Glycine, serine and alanine were used more slowly and only after proline and glutamate were used. Isoleucine, valine, leucine and aspartate decrease was slowest and occurred in a linear fashion throughout the growth phase. Amino acids used from casamino acids, excluding aspartate, were also used as single carbon, energy and nitrogen sources. As a single amino acid, aspartate could only be used as a nitrogen source. Aspartate was not used as an electron acceptor. No growth occurred on any amino acid in the absence of sulfate. As single substrates, isoleucine, proline and glutamate were oxidized without formation of acetate and with molar yields of 13.1, 9.4 and 7.7 g mol–1, respectively. Received: 24 June 1997 / Accepted: 10 September 1997  相似文献   

19.
Summary Biosynthetic preparation of2H- and13C- labeled amino acids was studied using a leucine-producing mutant of the obligate methylotroph,Methylobacillus flagellatum. The strain was cultivated in various media containing13C- or2H-analogs of methanol. The total protein from each experiment was subjected to acid hydrolysis and converted into a mixture of dansyl amino acid methyl esters. The samples of excreted leucine were converted into methyl esters of dansyl and benzyloxycarbonyl derivatives. Electron impact mass spectrometry was performed to detect stable isotope enrichment of the amino acids. According to the mass spectrometric analysis it is feasible to use methylotrophic microorganisms for the preparation of2H- and13C- analogs of amino acids by labeled methanol bioconversion; the excreted amino acids can be convenient for express analysis as an indicator of isotopic enrichment of the total protein. The data obtained testified to a high efficiency of dansyl derivatization for mass spectrometric analysis of complex amino acid mixtures.  相似文献   

20.
The consumption of inorganic macronutrients (NO3?+ NO2?, NH4+, and PO4?3) and the composition of intra- and extracellular dissolved free amino acid pools (IDFAA and EDFAA, respectively) were determined in continuous-reservoir batch dialysis cultures of the marine diatom Phaeodactylum tricornutum Bohlin maintained on unenriched natural seawater as a growth medium. Nutrient diffusion (Nd), which equals the nutrient uptake of the culture, increased with the cell density and the age of the culture. A concentration of 6.77 × 107 cells · mL?1 was obtained in stationary phase, which coincided with the NO3?+ NO2? diffusion limit (Ndmax) of the dialysis apparatus. The Ndmax for NH4+ occurred much earlier, at the end of exponential growth, whereas Ndmax for PO4?3 was not attained during the growth cycle of the culture, even in early stationary phase. A significant depletion (77%) of the IDFAA pool during exponential phase was followed by a reestablishment–to approximately 60% of the initial level–of internal pools during linear and stationary growth phases. This recovery occurred during the illuminated portion of the photoperiod (12:12 h LD) and involved principally the amino acids GLN, GLU, β-GLU, and ASN. The recovery of GLN and ASN levels was particularly significant, because the intracellular concentrations of these amino acids were higher at the end of the growth cycle than before. The EDFAA pool was generally dominated by the amino acids SER and GLY+THR; however, during active growth, ORN and LYS often constituted an important fraction. The EDFAA concentration increased until linear growth phase was reached, during which a higher concentration of total free amino acids was attained in darkness than under illumination. The EDFAA component diminished afterward, and in stationary phase this fraction returned to concentrations equivalent to those observed at the beginning of the growth cycle. The variations in EDFAA concentrations were expressed by a pronounced decrease in the cellular excretion of amino acids with increasing cell density. These cellular responses of Phaeodactylum tricornutum in dense culture, specifically the regulation of amino acid excretion and intracellular pool size, may affect the N-conversion coefficient (YN). Consequently, by prolonging the linear phase of growth and reducing the concentration of autoinhibitory metabolites by diffusion, a markedly enhanced final cell density can be achieved in cultures grown on natural unenriched seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号