首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Examples of homomeric β‐helices and β‐barrels have recently emerged. Here we generalize the theory for the shear number in β‐barrels to encompass β‐helices and homomeric structures. We introduce the concept of the “β‐strip,” the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n‐fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β‐strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α‐hemolysin, T4 phage spike, cylindrin, and the HET‐s(218‐289) prion. From reported dimensions measured by X‐ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in‐register β‐strands folded into a “β‐strip helix.” Results suggest both stabilization of an individual β‐strip helix and growth by addition of further β‐strip helices can involve the same pair of sequence segments associating with β‐sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design.  相似文献   

2.
The C‐terminal segment (residues 218–289) of the HET‐s protein of the filamentous fungus Podosporina anserina is a prion‐forming domain. The structural model of the HET‐s(218–289) amyloid fibril based on solid‐state nuclear magnetic resonance (NMR) restraints shows a β solenoid topology which is comprised of a β‐sheet core and interconnecting loops. For the single‐point mutants Phe286Ala and Trp287Ala, slower aggregation rates in vitro and loss of prionic infectivity have been reported recently. Here we have used molecular dynamics to compare the flexibility of the mutants and wild type. The simulations, initiated from a trimeric aggregate extracted from the NMR structural model, show structural stability on a 100‐ns time scale for wild type and mutants. Analysis of the fluctuations along the simulations reveals that the mutants are less flexible than the wild type in the C‐terminal segment at only one of the two external monomers. Analysis of interaction energy and buried accessible surface indicates that residue Phe286 in particular is stabilized in the Trp287Ala mutant. The simulation results provide an atomistic explanation of the suggestion (based on indirect experimental evidence) that flexibility at the protofibril end(s) is required for fibril elongation. Moreover, they provide further evidence that the growth of the HET‐s amyloid fibril is directional. Proteins 2014; 82:399–404. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The eye lens protein γD‐crystallin contributes to cataract formation in the lens. In vitro experiments show that γD‐crystallin has a high propensity to form amyloid fibers when denatured, and that denaturation by acid or UV‐B photodamage results in its C‐terminal domain forming the β‐sheet core of amyloid fibers. Here, we show that thermal denaturation results in sheet‐like aggregates that contain cross‐linked oligomers of the protein, according to transmission electron microscopy and SDS‐PAGE. We use two‐dimensional infrared spectroscopy to show that these aggregates have an amyloid‐like secondary structure with extended β‐sheets, and use isotope dilution experiments to show that each protein contributes approximately one β‐strand to each β‐sheet in the aggregates. Using segmental 13C labeling, we show that the organization of the protein's two domains in thermally induced aggregates results in a previously unobserved structure in which both the N‐terminal and C‐terminal domains contribute to β‐sheets. We propose a model for the structural organization of the aggregates and attribute the recruitment of the N‐terminal domain into the fiber structure to intermolecular cross linking.  相似文献   

4.
Amyloid fibrils are the pathological hallmark of a large variety of neurodegenerative disorders. The structural characterization of amyloid fibrils, however, is challenging due to their non‐crystalline, heterogeneous, and often dynamic nature. Thus, the structure of amyloid fibrils of many proteins is still unknown. We here show that the structure calculation program CS‐Rosetta can be used to obtain insight into the core structure of amyloid fibrils. Driven by experimental solid‐state NMR chemical shifts and taking into account the polymeric nature of fibrils CS‐Rosetta allows modeling of the core of amyloid fibrils. Application to the Y145X stop mutant of the human prion protein reveals a left‐handed β‐helix  相似文献   

5.
In patients with dialysis‐related amyloidosis, β2‐microglobulin (β2‐m) is a major structural component of amyloid fibrils. It has been suggested that the partial unfolding of β2‐m is a prerequisite to the formation of amyloid fibrils, and that the folding intermediate trapped by the non‐native trans‐Pro32 isomer leads to the formation of amyloid fibrils. Although clarifying the structure of this refolding intermediate by high resolution NMR spectroscopy is important, this has been made difficult by the limited lifetime of the intermediate. Here, we studied the structure of the refolding intermediate using a combination of amino acid selective labeling with wheat germ cell‐free protein synthesis and NMR techniques. The HSQC spectra of β2‐ms labeled selectively at either phenylalanine, leucine, or valine enabled us to monitor the structures of the refolding intermediate. The results suggested that the refolding intermediate has an overall fold and cores similar to the native structure, but contains disordered structures around Pro32. The fluctuation of the β‐sheet regions especially the last half of the βB strand and the first half of the βE strand, both suggested to be important for amyloidogenicity, may transform β2‐m into an amyloidogenic structure.  相似文献   

6.
The polymorphic β‐amyloid lesions present in individuals with Alzheimer's disease are collectively known as cerebral β‐amyloidosis. Amyloid precursor protein (APP) transgenic mouse models similarly develop β‐amyloid depositions that differ in morphology, binding of amyloid conformation‐sensitive dyes, and Aβ40/Aβ42 peptide ratio. To determine the nature of such β‐amyloid morphotypes, β‐amyloid‐containing brain extracts from either aged APP23 brains or aged APPPS1 brains were intracerebrally injected into the hippocampus of young APP23 or APPPS1 transgenic mice. APPPS1 brain extract injected into young APP23 mice induced β‐amyloid deposition with the morphological, conformational, and Aβ40/Aβ42 ratio characteristics of β‐amyloid deposits in aged APPPS1 mice, whereas APP23 brain extract injected into young APP23 mice induced β‐amyloid deposits with the characteristics of β‐amyloid deposits in aged APP23 mice. Injecting the two extracts into the APPPS1 host revealed a similar difference between the induced β‐amyloid deposits, although less prominent, and the induced deposits were similar to the β‐amyloid deposits found in aged APPPS1 hosts. These results indicate that the molecular composition and conformation of aggregated Aβ in APP transgenic mice can be maintained by seeded conversion.  相似文献   

7.
The crystal structure of an N‐terminal β‐strand‐swapped consensus‐derived tenascin FN3 alternative scaffold has been determined. A comparison with the unswapped structure reveals that the side chain of residue F88 orients differently and packs more tightly with the hydrophobic core of the domain. Dimer formation also results in the burial of a hydrophobic patch on the surface of the domain. Thus, it appears that tighter packing of F88 in the hydrophobic core and burial of surface hydrophobicity provide the driving forces for the N‐terminal β‐strand swapping, leading to the formation of a stable compact dimer. Proteins 2014; 82:1527–1533. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
The crystal structures of six different fibronectin Type III consensus‐derived Tencon domains, whose solution properties exhibit no, to various degrees of, aggregation according to SEC, have been determined. The structures of the five variants showing aggregation reveal 3D domain swapped dimers. In all five cases, the swapping involves the C‐terminal β‐strand resulting in the formation of Tencon dimers in which the target‐binding surface is blocked. All of the variants differ in sequence in the FG loop, which is the hinge loop in the β‐strand‐swapped dimers. The six tencon variants have between 0 and 5 residues inserted between positions 77 and 78 in the FG loop. Analysis of the structures suggests that a non‐glycine residue at position 77 and insertions of <4 residues may destabilize the β‐turn in the FG loop promoting β‐strand swapping. Swapped dimers with an odd number of inserted residues may be less stable, particularly if they contain proline residues, because they cannot form perfect β‐bridges in the FG regions that link the swapped dimers. The Tencon β‐swapped variants with the longest FG sequences are observed to form higher order hexameric or helical oligomeric structures in the crystal correlating well with the aggregation properties of these domains observed in solution. Understanding the structural basis for domain‐swapped dimerization and oligomerization will support engineering efforts of the Tencon domain to produce variants with desired biophysical properties. Proteins 2014; 82:1359–1369. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
In this article, we consider the role of heterogeneous nucleation in β‐amyloid aggregation. Heterogeneous nucleation is more common and occurs at lower levels of supersaturation than homogeneous nucleation. The nucleation period is also the stage at which most of the polymorphism of amyloids arises, this being one of the defining features of amyloids. We focus on several well‐known heterogeneous nucleators of β‐amyloid, including lipid surfaces, especially those enriched in gangliosides and cholesterol, and divalent metal ions. These two broad classes of nucleators affect β‐amyloid particularly in light of the amphiphilicity of these peptides: the N‐terminal region, which is largely polar and charged, contains the metal binding site, whereas the C‐terminal region is aliphatic and is important in lipid binding. Notably, these two classes of nucleators can interact cooperatively, aggregation begetting greater aggregation.  相似文献   

10.
In a group of neurodegenerative diseases, collectively termed transmissible spongiform encephalopathies, the prion protein aggregates into β‐sheet rich amyloid‐like deposits. Because amyloid structure has been connected to different prion strains and cellular toxicity, it is important to obtain insight into the structural properties of prion fibrils. Using a combination of solution NMR spectroscopy, thioflavin‐T fluorescence and electron microscopy we here show that within amyloid fibrils of a peptide containing residues 108–143 of the human prion protein [humPrP (108–143)]—the evolutionary most conserved part of the prion protein ‐ residue H111 and S135 are in close spatial proximity and their interaction is critical for fibrillization. We further show that residues H111 and H140 share the same microenvironment in the unfolded, monomeric state of the peptide, but not in the fibrillar form. While protonation of H140 has little influence on fibrillization of humPrP (108–143), a positive charge at position 111 blocks the conformational change, which is necessary for amyloid formation of humPrP (108–143). Our study thus highlights the importance of protonation of histidine residues for protein aggregation and suggests point mutations to probe the structure of infectious prion particles.  相似文献   

11.
β‐Sheets are quite frequent in protein structures and are stabilized by regular main‐chain hydrogen bond patterns. Irregularities in β‐sheets, named β‐bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β‐strands. They are implicated in protein‐protein interactions and are introduced to avoid β‐strand aggregation. Five different types of β‐bulges are defined. Previous studies on β‐bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β‐bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β‐bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574–1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β‐bulges are preferably localized at the N‐ and C‐termini of β‐strands, but contrary to the earlier studies, no significant conservation of β‐bulges was observed among structural homologues. Displacement of β‐bulges along the sequence was also investigated by Molecular Dynamics simulations.  相似文献   

12.
Secondary structural transitions from α‐helix to β‐sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β‐hairpin peptides form basic components of anti‐parallel β‐sheets and are suitable model systems for characterizing the fundamental forces stabilizing β‐sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β‐hairpin peptide GB1 and its E2 isoform that preferentially adopts α‐helical conformations at ambient conditions. Umbrella sampling simulations using all‐atom models and explicit solvent are performed over a large range of end‐to‐end distances. Our results show the strong preference of GB1 and the E2 isoform for β‐hairpin and α‐helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β‐hairpin structures which differ from each other in the position of the β‐turn. We discuss the energetic factors contributing favorably to the formation of α‐helix and β‐hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non‐bonded interactions. Proteins 2014; 82:2394–2402. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
β‐Sheet twisting is thought to be mainly determined by interstrand hydrogen bonds with little contribution from side chains, but some proteins have large, flat β‐sheets, suggesting that side chains influence β‐structures. We therefore investigated the relationship between amino acid composition and twists or bends of β‐strands. We calculated and statistically analyzed the twist and bend angles of short frames of β‐strands in known protein structures. The most frequent twist angles were strongly negatively correlated with the proportion of hydrophilic amino acid residues. The majority of hydrophilic residues (except serine and threonine) were found in the edge regions of β‐strands, suggesting that the side chains of these residues likely do not affect β‐strand structure. In contrast, the majority of serine, threonine, and asparagine side‐chains in β‐strands made contacts with a nitrogen atom of the main chain, suggesting that these residues suppress β‐strand twisting. Proteins 2014; 82:1484–1493. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Aggregation of β‐amyloid peptides into senile plaques has been identified as one of the hallmarks of Alzheimer's disease. An attractive therapeutic strategy for Alzheimer's disease is the inhibition of the soluble β‐amyloid aggregation using synthetic β‐sheet breaker peptides that are capable of binding Aβ but are unable to become part of a β‐sheet structure. As the early stages of the Aβ aggregation process are supposed to occur close to the neuronal membrane, it is strategic to define the β‐sheet breaker peptide positioning with respect to lipid bilayers. In this work, we have focused on the interaction between the β‐sheet breaker peptide acetyl‐LPFFD‐amide, iAβ5p, and lipid membranes, studied by ESR spectroscopy, using either peptides alternatively labeled at the C‐ and at the N‐terminus or phospholipids spin‐labeled in different positions of the acyl chain. Our results show that iAβ5p interacts directly with membranes formed by the zwitterionic phospholipid dioleoyl phosphatidylcholine and this interaction is modulated by inclusion of cholesterol in the lipid bilayer formulation, in terms of both peptide partition coefficient and the solubilization site. In particular, cholesterol decreases the peptide partition coefficient between the membrane and the aqueous medium. Moreover, in the absence of cholesterol, iAβ5p is located between the outer part of the hydrophobic core and the external hydrophilic layer of the membrane, while in the presence of cholesterol it penetrates more deeply into the lipid bilayer. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The 19‐transmembrane, multisubunit γ‐secretase complex generates the amyloid β‐peptide (Aβ) of Alzheimer's disease (AD) by an unusual intramembrane proteolysis of the β‐amyloid precursor protein. The complex, which similarly processes many other type 1 transmembrane substrates, is composed of presenilin, Aph1, nicastrin, and presenilin enhancer (Pen‐2), all of which are necessary for proper complex maturation and enzymatic activity. Obtaining a high‐resolution atomic structure of the intact complex would greatly aid the rational design of compounds to modulate activity but is a very difficult task. A complementary method is to generate structures for each individual subunit to allow one to build a model of the entire complex. Here, we describe a method by which recombinant human Pen‐2 can be purified from bacteria to > 95% purity at milligram quantities per liter, utilizing a maltose binding protein tag to both increase solubility and facilitate purification. Expressing the same construct in mammalian cells, we show that the large N‐terminal maltose binding protein tag on Pen‐2 still permits incorporation into the complex and subsequent presenilin‐1 endoproteolysis, nicastrin glycosylation and proteolytic activity. These new methods provide valuable tools to study the structure and function of Pen‐2 and the γ‐secretase complex.

  相似文献   


16.
The oligomerization and fibrillation of β‐amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1–28, Aβ1–36, Aβ11–42, Aβ17–42, Aβ1–40 and Aβ1–42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy. Compared with two C‐terminal‐truncated peptides (i.e. Aβ1–28 and Aβ1–36), Aβ11–42, Aβ17–42 and Aβ1–42 had stronger abilities to form oligomers. This indicated that amino acids 37–42 strengthen the β‐hairpin structure of Aβ. Both Aβ1–42 and Aβ1–40 could form fibres, but Aβ17–42 formed irregular fibres, suggesting that amino acids 1–17 were essential for Aβ fibre formation. Aβ1–28 and Aβ1–36 exhibited weak oligomerization and fibrillation, implying that they formed an unstable β‐hairpin structure owing to the incomplete C‐terminal region. Intermediate peptides were likely to form a stable structure, consistent with previous results. This work explains the roles and interplay among motifs within Aβ during oligomerization and fibrillation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The interaction of pineal hormone melatonin, the histological dye thioflavin T, and the olive tree polyphenol oleuropein, with the 28 amino acid residue N‐terminal fragment of the β‐amyloid peptide (β‐AP) of Alzheimer's disease, [β‐AP(1‐28)], was detected in solution through the observation of transferred NOEs (trNOEs) in 1D and 2D NOE spectroscopy (NOESY) experiments. The trNOE method is applied for the first time in the detection of interactions of soluble β‐AP(1‐28) with small molecules and may provide a means of screening for the identification of possible inhibitors of the formation of neurotoxic β‐AP assemblies. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Protein spin labeling to yield the nitroxide‐based R1 side chain is a powerful method to measure protein dynamics and structure by electron spin resonance. However, R1 measurements are complicated by the flexibility of the side chain. While analysis approaches for solvent‐exposed α‐helical environment have been developed to partially account for flexibility, similar work in β‐sheets is lacking. The goal of this study is to provide the first essential steps for understanding the conformational preferences of R1 within edge β‐strands using X‐ray crystallography and double electron electron resonance (DEER) distance measurements. Crystal structures yielded seven rotamers for a non‐hydrogen‐bonded site and three rotamers for a hydrogen‐bonded site. The observed rotamers indicate contextual differences in R1 conformational preferences compared to other solvent‐exposed environments. For the DEER measurements, each strand site was paired with the same α‐helical site elsewhere on the protein. The most probable distance observed by DEER is rationalized based on the rotamers observed in the crystal structure. Additionally, the appropriateness of common molecular modeling methods that account for R1 conformational preferences are assessed for the β‐sheet environment. These results show that interpretation of R1 behavior in β‐sheets is difficult and indicate further development is needed for these computational methods to correctly relate DEER distances to protein structure at edge β‐strand sites.  相似文献   

19.
Aβ amyloid proteins are involved in neuro‐degenerative diseases such as Alzheimer's, Parkinson's, and so forth. Because of its structurally stable feature under physiological conditions, Aβ amyloid protein disrupts the normal cell function. Because of these concerns, understanding the structural feature of Aβ amyloid protein in detail is crucial. There have been some efforts on lowering the structural stabilities of Aβ amyloid fibrils by decreasing the aromatic residues characteristic and hydrophobic effect. Yet, there is a lack of understanding of Aβ amyloid pair structures considering those effects. In this study, we provide the structural characteristics of wildtype (WT) and phenylalanine residue mutation to leucine (F20L) Aβ amyloid pair structures using molecular dynamics simulation in detail. We also considered the polymorphic feature of F20L and WT Aβ pair amyloids based on the facing β‐strand directions between the amyloid pairs. As a result, we were able to observe the varying effects of mutation, polymorphism, and protofibril lengths on the structural stability of pair amyloids. Furthermore, we have also found that opposite structural stability exists on a certain polymorphic Aβ pair amyloids depending on its oligomeric or protofibrillar state, which can be helpful for understanding the amyloid growth mechanism via repetitive fragmentation and elongation mechanism. Proteins 2017; 85:580–592. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Aggregation of the disordered protein α‐synuclein into amyloid fibrils is a central feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease. Small, pre‐fibrillar oligomers of misfolded α‐synuclein are thought to be the key toxic entities, and α‐synuclein misfolding can propagate in a prion‐like way. We explored whether a compound with anti‐prion activity that can bind to unfolded parts of the protein PrP, the cyclic tetrapyrrole Fe‐TMPyP, was also active against α‐synuclein aggregation. Observing the initial stages of aggregation via fluorescence cross‐correlation spectroscopy, we found that Fe‐TMPyP inhibited small oligomer formation in a dose‐dependent manner. Fe‐TMPyP also inhibited the formation of mature amyloid fibrils in vitro, as detected by thioflavin T fluorescence. Isothermal titration calorimetry indicated Fe‐TMPyP bound to monomeric α‐synuclein with a stoichiometry of 2, and two‐dimensional heteronuclear single quantum coherence NMR spectra revealed significant interactions between Fe‐TMPyP and the C‐terminus of the protein. These results suggest commonalities among aggregation mechanisms for α‐synuclein and the prion protein may exist that can be exploited as therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号