首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Filifactor alocis is a newly appreciated pathogen in periodontal diseases. Neutrophils are the predominant innate immune cell in the gingival crevice. In this study, we examined modulation of human neutrophil antimicrobial functions by F. alocis. Both non‐opsonised and serum‐opsonised F. alocis were engulfed by neutrophils but were not efficiently eliminated. Challenge of neutrophils with either non‐opsonised or serum‐opsonised F. alocis induced a minimal intracellular as well as extracellular respiratory burst response compared to opsonised Staphylococcus aureus and fMLF, respectively. However, pretreatment or simultaneous challenge of neutrophils with F. alocis did not affect the subsequent oxidative response to a particulate stimulus, suggesting that the inability to trigger the respiratory response was only localised to F. alocis phagosomes. In addition, although neutrophils engulfed live or heat‐killed F. alocis with the same efficiency, heat‐killed F. alocis elicited a higher intracellular respiratory burst response compared to viable organisms, along with decreased surface expression of CD35, a marker of secretory vesicles. F. alocis phagosomes remained immature by delayed and reduced recruitment of specific and azurophil granules, respectively. These results suggest that F. alocis withstands neutrophil antimicrobial responses by preventing intracellular ROS production, along with specific and azurophil granule recruitment to the bacterial phagosome.  相似文献   

2.
Until now, no data are available on the outer membrane (OM) proteome of Erwinia amylovora, a Gram‐negative plant pathogen, causing fire blight in most of the members of the Rosaceae family. Since the OM forms the interface between the bacterial cell and its environment it is in direct contact with the host. Additionally, the type III secretion system, embedded in the OM, is a pathogenicity factor of E. amylovora. To assess the influence of the OM composition and the secretion behavior on virulence, a 2D‐DIGE analysis and gene expression profiling were performed on a high and lower virulent strain, both in vitro and in planta. Proteome data showed an increase in flagellin for the lower virulent strain in vitro, whereas, in planta several interesting proteins were identified as being differently expressed between both the strains. Further, gene expression of nearly all type III secreted effectors was elevated for the higher virulent strain, both in vitro and in planta. As a first, we report that several characteristics of virulence can be assigned to the OM proteome. Moreover, we demonstrate that secreted proteins prove to be the important factors determining differences in virulence between the strains, otherwise regarded as homogeneous on a genome level.  相似文献   

3.
Bacterial pathogens are exposed to toxic molecules inside the host and require efficient systems to form and maintain correct disulfide bonds for protein stability and function. The intracellular pathogen Francisella tularensis encodes a disulfide bond formation protein ortholog, DsbA, which previously was reported to be required for infection of macrophages and mice. However, the molecular mechanisms by which F. tularensis DsbA contributes to virulence are unknown. Here, we demonstrate that F. tularensis DsbA is a bifunctional protein that oxidizes and, more importantly, isomerizes complex disulfide connectivity in substrates. A single amino acid in the conserved cis‐proline loop of the DsbA thioredoxin domain was shown to modulate both isomerase activity and F. tularensis virulence. Trapping experiments in F. tularensis identified over 50 F. tularensis DsbA substrates, including outer membrane proteins, virulence factors, and many hypothetical proteins. Six of these hypothetical proteins were randomly selected and deleted, revealing two novel proteins, FTL_1548 and FTL_1709, which are required for F. tularensis virulence. We propose that the extreme virulence of F. tularensis is partially due to the bifunctional nature of DsbA, that many of the newly identified substrates are required for virulence, and that the development of future DsbA inhibitors could have broad anti‐bacterial implications.  相似文献   

4.
Gram‐negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σE envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two‐component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram‐negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σE envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σE and Cpx responses in non‐pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σE response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K‐12. Cpx pathway activation resulted in part from overexpression of the bundle‐forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.  相似文献   

5.

Background  

Bacteria in periodontal pockets develop complex sessile communities that attach to the tooth surface. These highly dynamic microfloral environments challenge both clinicians and researchers alike. The exploration of structural organisation and bacterial interactions within these biofilms is critically important for a thorough understanding of periodontal disease. In recent years, Filifactor alocis, a fastidious, Gram-positive, obligately anaerobic rod was repeatedly identified in periodontal lesions using DNA-based methods. It has been suggested to be a marker for periodontal deterioration. The present study investigated the epidemiology of F. alocis in periodontal pockets and analysed the spatial arrangement and architectural role of the organism in in vivo grown subgingival biofilms.  相似文献   

6.
Ochrobactrum anthropi is a Gram‐negative rod belonging to the Brucellaceae family, able to colonize a variety of environments, and actually reported as a human opportunistic pathogen. Despite its low virulence, the bacterium causes a growing number of hospital‐acquired infections mainly, but not exclusively, in immunocompromised patients. The aim of this study was to obtain an overview of the global proteome changes occurring in O. anthropi in response to different growth temperatures, in order to achieve a major understanding of the mechanisms by which the bacterium adapts to different habitats and to identify some potential virulence factors. Combined quantitative mass spectrometry‐based proteomics and bioinformatics approaches were carried out on two O. anthropi strains grown at temperatures miming soil/plants habitat (25°C) and human host environment (37°C), respectively. Proteomic analysis led to the identification of over 150 differentially expressed proteins in both strains, out of over 1200 total protein identifications. Among them, proteins responsible for heat shock response (DnaK, GrpE), motility (FliC, FlgG, FlgE), and putative virulence factors (TolB) were identified. The study represents the first quantitative proteomic analysis of O. anthropi performed by high‐resolution quantitative mass spectrometry.  相似文献   

7.
Helicobacter pylori establishes a chronic lifelong infection in the human gastric mucosa, which may lead to peptic ulcer disease or gastric adenocarcinoma. The human beta‐defensins (hβDs) are antimicrobial peptides, hβD1 being constitutively expressed in the human stomach. We hypothesized that H. pylori may persist, in part, by downregulating gastric hβD1 expression. We measured hβD1 and hβD2 expression in vivo in relation to the presence, density and severity of H. pylori infection, investigated differential effects of H. pylori virulence factors, and studied underlying signalling mechanisms in vitro. Significantly lower hβD1 and higher hβD2 mRNA and protein concentrations were present in gastric biopsies from infected patients. Those patients with higher‐level bacterial colonization and inflammation had significantly lower hβD1 expression, but there were no differences in hβD2. H. pylori infection of human gastric epithelial cell lines also downregulated hβD1. Using wild‐type strains and isogenic mutants, we showed that a functionalcag pathogenicity island‐encoded type IV secretion system induced this downregulation. Treatment with chemical inhibitors or siRNA revealed that H. pylori usurped NF‐κB signalling to modulate hβD1 expression. These data indicate that H. pylori downregulates hβD1 expression via NF‐κB signalling, and suggest that this may promote bacterial survival and persistence in the gastric niche.  相似文献   

8.
Filifactor alocis and Dialister pneumosintes have been associated with the initiation and progression of periodontitis (PE). We determined and compared the frequency of both bacteria in patients with PE, rheumatoid arthritis (RA), and PE/RA simultaneously. Detection was performed by polymerase chain reaction in the subgingival biofilm. Bacteria were more frequent in patients with PE, and clinical periodontal parameters such as pocket depth (PD) and clinical attachment loss (CAL) were significantly higher in patients with PE/RA. F. alocis and D. pneumosintes could influence PD and CAL, hence participating in the initiation and progression of PE in patients with RA.  相似文献   

9.
10.
In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2‐D DIGE technology allowed the detection of around 2000 protein spots on each 2‐D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CM?Ros showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation‐induced development.  相似文献   

11.
12.
Filifactor alocis is a gram positive anaerobe that is emerging as an important periodontal pathogen. In the oral cavity F. alocis colonizes polymicrobial biofilm communities; however, little is known regarding the nature of the interactions between F. alocis and other oral biofilm bacteria. Here we investigate the community interactions of two strains of F. alocis with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, organisms with differing pathogenic potential in the oral cavity. In an in vitro community development model, S. gordonii was antagonistic to the accumulation of F. alocis into a dual species community. In contrast, F. nucleatum and the type strain of F. alocis formed a synergistic partnership. Accumulation of a low passage isolate of F. alocis was also enhanced by F. nucleatum. In three species communities of S. gordonii, F. nucleatum and F. alocis, the antagonistic effects of S. gordonii superseded the synergistic effects of F. nucleatum toward F. alocis. The interaction between A. actinomycetemcomitans and F. alocis was strain specific and A. actinomycetemcomitans could either stimulate F. alocis accumulation or have no effect depending on the strain. P. gingivalis and F. alocis formed heterotypic communities with the amount of P. gingivalis greater than in the absence of F. alocis. However, while P. gingivalis benefited from the relationship, levels of F. alocis in the dual species community were lower compared to F. alocis alone. The inhibitory effect of P. gingivalis toward F. alocis was dependent, at least partially, on the presence of the Mfa1 fimbrial subunit. In addition, AI-2 production by P. gingivalis helped maintain levels of F. alocis. Collectively, these results show that the pattern of F. alocis colonization will be dictated by the spatial composition of microbial microenvironments, and that the organism may preferentially accumulate at sites rich in F. nucleatum.  相似文献   

13.
应用双向电泳及质谱技术对血清2型鸭疫里默氏杆菌强毒株及其体外传代200代(RA200)的弱毒菌株的外膜蛋白进行比较蛋白质组学研究,借此分析鸭疫里默氏杆菌的外膜蛋白表达特点,研究差异表达蛋白与细菌毒力的关系.在实验中检测到血清2型鸭疫里默氏杆菌原代及其体外传代获得的弱毒菌株的外膜蛋白约表达60个蛋白质点(n=3),其中相差5倍以上3个.胶内酶解和肽质量指纹图谱分析后鉴定,W1为热休克蛋白Hsp20家族成员,W2、W3为转座酶,推测它们可能与里默氏杆菌的毒力密切相关.  相似文献   

14.
15.
Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a worldwide distribution. Cell wall‐degrading enzymes and oxalic acid are important to the virulence of this pathogen. Here, we report a novel secretory protein, Ss‐Rhs1, which is essential for the virulence of S. sclerotiorum. Ss‐Rhs1 is believed to contain a typical signal peptide at the N‐terminal and eight rearrangement hotspot (Rhs) repeats. Ss‐Rhs1 exhibited a high level of expression at the initial stage of sclerotial development, as well as during the hyphal infection process. Targeted silencing of Ss‐Rhs1 resulted in abnormal colony morphology and reduced virulence on host plants. Microscopic observations indicated that Ss‐Rhs1‐silenced strains exhibited reduced efficiency in compound appressoria formation.  相似文献   

16.
Finegoldia magna is a Gram‐positive anaerobic commensal of the human skin microbiota, but also known to act as an opportunistic pathogen. Two primary virulence factors of F. magna are the subtilisin‐like extracellular serine protease SufA and the adhesive protein FAF. This study examines the molecular mechanisms F. magna uses when colonizing or establishing an infection in the skin. FAF was found to be essential in the initial adherence of F. magna to human skin biopsies. In the upper layers of the epidermis FAF mediates adhesion through binding to galectin‐7 – a keratinocyte cell marker. Once the bacteria moved deeper into the skin to the basement membrane layer, SufA was found to degrade collagen IV which forms the backbone structure of the basement membrane. It also degraded collagen V, whereby F. magna could reach deeper dermal tissue sites. In the dermis, FAF interacts with collagen V and fibrillin, which presumably helps the bacteria to establish infection in this area. The findings of this study paint a clear picture of how F. magna interacts with human skin and explain how it is such a successful opportunistic pathogen in chronic wounds and ulcers.  相似文献   

17.
Plasmodium falciparum virulence is linked to its ability to sequester in post‐capillary venules in the human host. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the main variant surface antigen implicated in this process. Complete loss of parasite adhesion is linked to a large subtelomeric deletion on chromosome 9 in a number of laboratory strains such as D10 and T9‐96. Similar to the cytoadherent reference line FCR3, D10 strain expresses PfEMP1 on the surface of parasitized erythrocytes, however without any detectable cytoadhesion. To investigate which of the deleted subtelomeric genes may be implicated in parasite adhesion, we selected 12 genes for D10 complementation studies that are predicted to code for proteins exported to the red blood cell. We identified a novel single copy gene (PF3D7_0936500) restricted to P. falciparum that restores adhesion to CD36, termed here virulence‐associated protein 1 (Pfvap1). Protein knockdown and gene knockout experiments confirmed a role of PfVAP1 in the adhesion process in FCR3 parasites. PfVAP1 is co‐exported with PfEMP1 into the host cell via vesicle‐like structures called Maurer's clefts. This study identifies a novel highly conserved parasite molecule that contributes to parasite virulence possibly by assisting PfEMP1 to establish functional adhesion at the host cell surface.  相似文献   

18.
19.
The present study reports a comparative proteome cataloging of a bovine mastitis and a human‐associated Staphylococcus epidermidis strain with a specific focus on surfome (cell‐wall bound and extracellular) proteins. Protein identification by 1DE coupled with LC‐MS/MS analyses resulted in 1400 and 1287 proteins from the bovine (PM221) and human (ATCC12228) strains, respectively, covering over 50% of all predicted and more than 30% of all predicted surfome proteins in both strains. Comparison of the identification results suggests elevated levels of proteins involved in adherence, biofilm formation, signal transduction, house‐keeping functions, and immune evasion in PM221, whereas ATCC12228 was more effective in expressing host defense evasion proteases, skin adaptation lipases, hemagglutination, and heavy‐metal resistance proteins. Phenotypic analyses showed that only PM221 displays protein‐ and DNA‐mediated adherent growth, and that PM221 was more efficient in cleaving tributyrin, a natural compound of milk fat under low CO2 conditions. These findings are in line with the identification data and suggest that distinct expression of lipases and adhesive surfome proteins could lead to the observed phenotypes. This study is the first extensive survey of S. epidermidis proteomes to date, providing several protein candidates to be examined for their roles in adaptation and virulence in vivo. All MS data have been deposited in the ProteomeXchange with identifier PXD000404 ( http://proteomecentral.proteomexchange.org/dataset/PXD000404 ).  相似文献   

20.
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)‐box‐containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)‐based gene silencing was employed to alter the expression of SsFkh1. RNA‐silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis‐related laccase genes and a polyketide synthase‐encoding gene were significantly down‐regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi‐silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号