首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Steady state concentrations of individual RNA sequences in poly(A) nuclear and cytoplasmic RNA populations of Drosophila Kc cells were determined using cloned cDNA fragments. These cDNAs represent poly(A) RNA sequences of different abundance in the cytoplasm of Kc cells, but their steady state concentrations in poly(A) hnRNA was always lower. Of ten different sequences analysed, eight showed some four-fold lower concentration in hnRNA mRNA, two were underrepresented in hnRNA relative to the others. The obvious clustering of mRNA/hnRNA ratios is discussed in relation to sequence complexity and turnover rates of these RNA populations.  相似文献   

5.
The complexity of nuclear RNA, poly(A)hnRNA, poly(A)mRNA, and total poly(A)RNA from mouse brain has been measured by saturation hybridization with nonrepeated DNA. These DNA populations were complementary, respectively, to 21, 13.5, 3.8, and 13.3% of the DNA. From the RNA Cot required to achieve half-sturation, it was estimated that about 2.5–3% of the mass of total nuclear RNA constituted most of the complexity. Similarly, complexity driver molecules constituted 6–7% of the mass of the poly(A)hnRNA. 75–80% of the poly(A)mRNA diversity is contained in an estimated 4–5% of the mass of this mRNA. Poly(A)hnRNA constituted about 20% of the mass of nuclear RNA and was comprised of molecules which sedimented in DMSO-sucrose gradients largely between 16S and 60S. The number average size of poly(A)hnRNA determined by sedimentation, electron microscopy, or poly(A) content was 4200–4800 nucleotides. Poly(A)mRNA constituted about 2% of the total polysomal RNA, and the number average size was 1100–1400 nucleotides. The complexity of whole cell poly(A)RNA, which contains both poly(A)hnRNA and poly(A)mRNA populations, was the same as poly(A)hnRNA. This implies that cytoplasmic polyadenylation does not occur to any apparent qualitative extent and that poly(A)mRNA is a subset of the poly(A)hnRNA population. The complexity of poly(A)hnRNA and poly(A)mRNA in kilobases was 5 × 105 and 1.4 × 105, respectively. DNA which hybridized with poly(A)mRNA renatures in the presence of excess total DNA at the same rate as nonrepetitive tracer DNA. Hence saturation values are due to hybridization with nonrepeated DNA and are therefore a direct measure of the sequence complexity of poly(A)mRNA. These results indicate that the nonrepeated sequence complexity of the poly(A)mRNA population is equal to about one fourth that observed for poly(A)hnRNA.  相似文献   

6.
7.
8.
Representation of genomic kinetic sequence classes and sequence complexities were investigated in nuclear and polysomal RNA of the higher plant Petroselinum sativum (parsley). Two different methods indicated that most if not all polysomal poly(A) -RNA is transcribed from unique sequences. As measured by saturation hybridization in root callus and young leaves 8.7% and 6.2%, respectively, of unique DNA were transcribed in mRNA corresponding to 13.700 and 10.000 average sized genes. Unique nuclear DNA hybridized with an excess of polysomal poly(A)mRNA to the same extent as with total polysomal RNA. 3H-cDNA - poly(A)mRNA hybridization kinetics revealed the presence of two abundance classes with 9.200 and about 30 different mRNAs in leaves and two abundance classes with 10.500 and 960 different mRNAs in callus cells. The existence of plant poly(A)hnRNA was proven both by its fast kinetics of appearance, its length distribution larger than mRNA, and its sequence complexity a few times that of polysomal RNA.  相似文献   

9.
10.
11.
The fraction of hnRNA synthesized in the presence of DRB in uninfected HeLa cells ranges in size from 4S to over 45S. High molecular weight DRB-resistant hnRNA has been demonstrated to decay after 2 h of actinomycin D chase. This fraction is composed of both poly(A)(+) and poly(A)(-) RNA molecules. The synthesis in the presence of DRB of short polyadenylated hnRNA was also observed. The nature of both hnRNA subfractions is discussed.  相似文献   

12.
13.
14.
The relationship between heterogeneous nuclear RNA (hnRNA) and messenger RNA (mRNA) synthesis has been studied as a function of the development of the sea urchin embryo through the use of methyl incorporation. Several parameters in the metabolism of capped hnRNA and mRNA of early blastula and late gastrula stages have been investigated by measuring the kinetics of transfer of methyl groups from S-adenosylmethionine to the 5′ cap structures in nuclear and cytoplasmic RNA:
  • 1 The rate constants for the decay of hnRNA caps and the synthesis of mRNA caps are equal to within experimental error. This equality indicates a flux of precursor hnRNA caps to mRNA caps with a very high degree of conservation of the hnRNA caps. This conservation holds for each embryonic stage.
  • 2 From literature data on the labeling kinetics of GTP and mRNA, we have calculated the decay constant of a putative mRNA precursor component of hnRNA. The value of this constant is very close to that for the decay constant of hnRNA caps. Hence, all hnRNA caps and some portion of their associated hnRNA sequences behave kinetically as the pre-mRNA fraction. This kinetically ascribed pre-mRNA comprises approximately 30% of the hnRNA mass.
  • 3 The part of the hnRNA which does not serve as precursor to mRNA turns over at least twice as rapidly as the pre-mRNA fraction.
  • 4 During development from early blastula to late gastrula, the rate of hnRNA cap synthesis drops from 2 × 103 molecules/min/cell to half of this value. This decline is parallel to the decline in total hnRNA synthesis and thereby confirms the constant degree of capping of hnRNA, as previously reported. We infer that the pre-mRNA fraction of hnRNA remains nearly constant during this developmental period.
  相似文献   

15.
The analysis by the approach to equilibrium labeling method has shown that the poly(A)+ fraction of liver hnRNA is not a uniform class of molecules, but is comprised of two distinct subclasses with half-lives of 5 and 60 min, while the poly(A)- hnRNA was metabolically homogeneous and turned over with a rather uniform half-life of 30 min. The results suggest that (a) poly(A) synthesis and addition is not limiting for the rate of hnRNA processing, and (b) there is a correlation between the kinetics of mRNA appearance in the cytoplasm and kinetic behavior of their possible nuclear precursors.  相似文献   

16.
Repeat sequences are transcribed in the germinal vesicles of amphibian oocytes. In the hnRNA population both complements of the repeats are found and can be readily detected because they form intermolecular duplex structures. The structure and formation of duplex regions have been studied in the hnRNA of Xenopus laevis, Triturus cristatus, Amphiuma means and Necturus maculosus, a series of amphibians of increasing genome size (C-value). In T. cristatus, the duplex structures are mostly 600-1200 bp in length, whereas in X. laevis they are shorter and in N. maculosus they tend to be longer. Although the proportion of RNA sequence capable of rapidly forming duplex structures is different in different organisms, this property bears no relationship to C-value. However the sequence complexity of complementary repeats, as estimated from the rate of duplex formation, does show an increasing trend with C-value. The complementary repeats found in oocyte hnRNA are transcribed from families of DNA sequence that are each represented in the genome by thousands of copies. The extent of cross-species hybridization is low, indicating that the repeat sequences transcribed in different amphibian genera are not the same. In situ hybridization experiments indicate that the repeat sequences are spread throughout the genome. The evolution and possible function of complementary repeats are considered.  相似文献   

17.
18.
Comparison of nucleotide sequences in HeLa cell mRNA and hnRNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

19.
To investigate poly(A)-lacking mRNA in mouse kidney, we studied a fraction of renal mRNA that does not bind to oligo(dT)-cellulose but can be purified by benzoylated cellulose chromatography. Nominal poly(A)-lacking mRNA and poly(A)-containing mRNA have complete nucleotide sequence homology, suggesting that kidney does not contain mRNAs that are not represented in the polyadenylated RNA fraction. Translation products directed by nominal poly(A)-lacking mRNA and poly(A)-containing mRNA are qualitatively and quantitatively similar in one-dimensional polyacrylamide gels. [3H]cDNA transcribed from poly(A)-containing mRNA hybridizes with its template and with nominal poly(A)-lacking mRNA to the same extent (95%) and with the same kinetics; reaction of [3H]cDNA to nominal poly(A)-lacking mRNA with the two mRNA populations gives the same result. The extensive homology these two mRNA populations share is important to the interpretation of mRNA lifetime and to the analysis of authentic poly(A)-lacking mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号