首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The substrate specificity of acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) determines the fatty acids available for the biosynthesis of storage and membrane lipids in seeds. In order to determine the mechanisms involved in the biosynthesis of fatty acids in sunflower seeds (Helianthus annuus L.), we isolated, cloned and sequenced a cDNA clone of acyl-ACP thioesterase from developing sunflower seeds, HaFatA1. Through the heterologous expression of HaFatA1 in Escherichia coli we have purified and characterized this enzyme, showing that sunflower HaFatA1 cDNA encodes a functional thioesterase with preference for monounsaturated acyl-ACPs. The HaFatA1 thioesterase was most efficient (kcat/Km) in catalyzing oleoyl-ACP, both in vivo and in vitro. By comparing this sequence with those obtained from public databases, we constructed a phylogenetic tree that included FatA and FatB thioesterases, as well as related prokaryotic proteins. The phylogenetic relationships support the endosymbiotic theory of the origin of eukaryotic cells and the suggestion that eubacteria from the -subdivision were the guest cells in the symbiosis with archaea. These prokaryotic proteins are more homologous to plant FatB, suggesting that the ancient thioesterases were more similar to FatB. Finally, using the available structure prediction methods, a 3D model of plant acyl-ACP thioesterases is proposed that reflects the combined data from direct mutagenesis and chimera studies. In addition, the model was tested by mutating the residues proposed to interact with the ACP protein in the FatA thioesterase by site-directed mutagenesis. The results indicate that this region is involved in the stabilization of the substrate at the active site.  相似文献   

2.
Acyl–acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.  相似文献   

3.
Acyl-acyl-carrier protein (ACP) thioesterases are, at least in part, responsible for the fatty acyl chain length composition of seed storage oils. Acyl-ACP thioesterases with specificity for each of the saturated acyl-ACP substrates from 8:0 through 16:0 have been cloned, with the exception of 18:0, and are members of the FatB class of thioesterases. The authors have determined that the tropical tree species mangosteen (Garcinia mangostana) stores 18:0 (stearate) in its seed oil in amounts of up to 56% by weight. Acyl-ACP thioesterase activity as measured in crude mangosteen seed extracts showed a preference for 18:1-ACP substrates, but had significant activity with 18:0 relative to that with 16:0-ACP, suggesting a thioesterase might be involved in the production of stearate. Three distinct acyl-ACP thioesterases were cloned from mangosteen seed cDNA; two representative of the FatA class and one representative of the FatB class. When expressed in vitro, the enzyme encoded by one of the FatAs (Garm FatA1) while preferring 18:1-ACP showed relatively low activity with 16:0-ACP as compared to 18:0-ACP, similar to the substrate preferences shown by the crude seed extract. Expression of Garm FatA1 in Brassica seeds led to the accumulation of stearate up to 22% in seed oil. These results suggest that Garm FatA1 is at least partially responsible for determining the high stearate composition of mangosteen seed oil and that FatA as well FatB thioesterases have evolved for specialized roles.  相似文献   

4.
The substrate specificity of the acyl–acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed.  相似文献   

5.
The specificity of plant acyl-acyl carrier protein (ACP) thioesterases is the major determinant of the chain length and level of saturated fatty acids found in most plant tissues. Although these enzymes have been previously characterized from a number of sources, information on kinetic parameters for a wide range of substrates with cloned enzymes is lacking. In the present study the substrate specificity of recombinant FatA thioesterase isoforms from Arabidopsis (AtFatA) and coriander (CsFatA) and FatB from Arabidopsis (AtFatB) have been re-examined with a comprehensive range of substrates including 14:1-ACP and 16:1-ACP. AtFatA displayed the highest catalytic efficiencies (kcat/Km) towards oleoyl-ACP with activities at least 20-fold lower for all other tested substrates and 75-fold lower with palmitoyl-ACP. Both chain length and double bond presence strongly influenced kcat of FatA with minor influence on Km. Arabidopsis FatB substrate specificity was found to differ from previous reports and this difference could be attributed to the influence of ACP structure. FatB activity with palmitoyl-ACP was 2.5-fold higher and the ratio of 16:0-ACP/14:0-ACP hydrolysis was 6.4-fold higher with spinach ACP compared to E. coli ACP. Additionally, the influence of amino acid domains from both AtFatA and AtFatB on their substrate specificity was studied by utilizing a domain-swapping approach. The characterization of the resulting chimeric enzymes pointed to the N-terminus as a determinant of the substrate specificity for both FatA and FatB acyl-ACP thioesterases.  相似文献   

6.

Background

Thioesterases remove the fatty acyl moiety from the fatty acyl-acyl carrier proteins (ACPs), releasing them as free fatty acids (FFAs), which can be further used to produce a variety of fatty acid-based biofuels, such as biodiesel, fatty alcohols and alkanes. Thioesterases play a key role in the regulation of the fatty acid synthesis in Escherichia coli. Therefore, exploring more promising thioesterases will contribute to the development of industrial microbial lipids production.

Results

We cloned and expressed a cytosolic Acinetobacter baylyi thioesterase (‘AcTesA) in E. coli by deleting its leader sequence. Protein sequence alignment, structure modeling and site-directed mutagenesis demonstrated that Ser10, Gly48, Asn77, Asp158 and His161 residues composed the active centre of ‘AcTesA. The engineered strain that overexpressed ‘AcTesA achieved a FFAs titer of up to 501.2 mg/L in shake flask, in contrast to only 20.5 mg/L obtained in wild-type E. coli, demonstrating that the expression of ‘AcTesA indeed boosted the synthesis of FFAs. The ‘AcTesA exhibited a substrate preference towards the C8-C16 acyl groups, with C14:0, C16:1, C12:0 and C8:0 FFAs being the top four components. Optimization of expression level of ‘AcTesA made the FFAs production increase to 551.3 mg/L. The FFAs production further increased to 716.1 mg/L by optimization of the culture medium. Fed-batch fermentation was also carried out to evaluate the FFAs production in a scaleable process. Finally, 3.6 g/L FFAs were accumulated within 48 h, and a maximal FFAs yield of 6.1% was achieved in 12–16 h post induction.

Conclusions

For the first time, an A. baylyi thioesterase was cloned and solubly expressed in the cytosol of E. coli. This leaderless thioesterase (‘AcTesA) was found to be capable of enhancing the FFAs production of E. coli. Without detailed optimization of the strain and fermentation, the finally achieved 3.6 g/L FFAs is encouraging. In addition, ‘AcTesA exhibited different substrate specificity from other thioesterases previously reported, and can be used to supply the fatty acid-based biofuels with high quality of FFAs. Altogether, this study provides a promising thioesterase for FFAs production, and is of great importance in enriching the library of useful thioesterases.
  相似文献   

7.
Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl–acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2 g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively.  相似文献   

8.

Background  

The large amount of available sequence information for the plant acyl-ACP thioesterases (TEs) made it possible to use a bioinformatics-guided approach to identify amino acid residues involved in substrate specificity. The Conserved Property Difference Locator (CPDL) program allowed the identification of putative specificity-determining residues that differ between the FatA and FatB TE classes. Six of the FatA residue differences identified by CPDL were incorporated into the FatB-like parent via site-directed mutagenesis and the effect of each on TE activity was determined. Variants were expressed in E. coli strain K27 that allows determination of enzyme activity by GCMS analysis of fatty acids released into the medium.  相似文献   

9.
10.

Objectives

To explore the role of thioesterases in Rhodococcus opacus PD630 by endogenously overexpression in this bacteria for increased lipid production.

Results

Overexpression of four thioesterases from R. opacus PD630 in E. coli led to a 2- to 8-fold increase in C16:1 and C18:1 fatty acids while, when overexpressed in R. opacus PD630, only two recombinants had significant effect on the quantities and compositions of total fatty acid. The contents of total fatty acids (FAs) in two recombinants, pJTE2 (OPAG_00508 thioesterase) and pJTE4 (WP_012687673.1 thioesterase), were 400–460 mg/g (CDW) which is 1.5 times of wild-type strain PD630 (300-350 mg/g CDW), and 20–30 % (w/w) more than that of the control strain PDpJAM2 (330-370 mg/g CDW). The contents of 17:1 and 18:1 fatty acids increased by about 27 and 35 %, respectively, in pJTE2 and by 35 and 20 %, respectively, in pJTE4 compared with the control strain.

Conclusions

The engineered strains showed improved production of lipid (as total fatty acids), and could also tailor the composition of the fatty acid profile when cultured in mineral salts medium using glucose as sole carbon source.
  相似文献   

11.
In cyanobacteria fatty acids destined for lipid synthesis can be synthesized de novo, but also exogenous free fatty acids from the culture medium can be directly incorporated into lipids. Activation of exogenous fatty acids is likely required prior to their utilization. To identify the enzymatic activity responsible for activation we cloned candidate genes from Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 and identified the encoded proteins as acyl-acyl carrier protein synthetases (Aas). The enzymes catalyze the ATP-dependent esterification of fatty acids to the thiol of acyl carrier protein. The two protein sequences are only distantly related to known prokaryotic Aas proteins but they display strong similarity to sequences that can be found in almost all organisms that perform oxygenic photosynthesis. To investigate the biological role of Aas activity in cyanobacteria, aas knockout mutants were generated in the background of Synechocystis sp. PCC 6803 and S. elongatus PCC 7942. The mutant strains showed two phenotypes characterized by the inability to utilize exogenous fatty acids and by the secretion of endogenous fatty acids into the culture medium. The analyses of extracellular and intracellular fatty acid profiles of aas mutant strains as well as labeling experiments indicated that the detected free fatty acids are released from membrane lipids. The data suggest a considerable turnover of lipid molecules and a role for Aas activity in recycling the released fatty acids. In this model, lipid degradation represents a third supply of fatty acids for lipid synthesis in cyanobacteria.Cyanobacteria present a diverse group of Gram-negative bacteria capable of oxygenic photosynthesis (Margulis, 1975). Their two photosystems, as well as other genetic and morphological similarities, identified them as putative predecessors of chloroplasts of eukaryotic plants (Wallace, 1982; Pakrasi, 1995). The structural similarities of cyanobacteria and chloroplasts are reflected in part by equivalence of biochemical pathways and their components. For instance, cyanobacterial fatty acid and glycerolipid compositions closely resemble those of the inner envelope and thylakoid membranes of chloroplasts (Roughan et al., 1980; Heinz and Roughan, 1983). In cyanobacteria, as well as in chloroplasts, fatty acids are synthesized by a type II fatty acid synthase (FAS) complex utilizing a freely dissociable acyl carrier protein (ACP; Froehlich et al., 1990). The products of FAS are released as acyl ACPs and may serve directly as substrates for acyltransferases, incorporating the fatty acids into membrane lipids (Frentzen et al., 1983). The substrate specificity of the acyltransferases establishes in cyanobacteria as well as in plastids the typical prokaryotic fatty acid pattern characterized by C16 fatty acids esterified to the sn-2 position. The correspondence of metabolic pathways between cyanobacteria and chloroplasts is reflected by the shared presence of closely related enzymes that catalyze key reactions. Besides the many similarities, however, there are also clear discrepancies that in part account for the fact that cyanobacteria are unicellular organisms, whereas chloroplasts are embedded in the metabolism of a eukaryotic cell. In terms of lipid metabolism, such differences become obvious if one considers the fact that the plastidial FAS also supplies the extraplastidic compartment with fatty acids (Browse et al., 1986). Fatty acid export from the chloroplast necessitates the release of synthesized acyl chains from ACP to allow transport across both envelope membranes. The release is achieved by the action of acyl-ACP thioesterases that hydrolyze the acyl-ACP thioester to liberate the fatty acid (Voelker et al., 1997). In cyanobacteria such export would obviously result in an unfavorable loss of fatty acids, and consequently homologous proteins to acyl-ACP thioesterases cannot be found here. Whereas cyanobacteria seem to be unable to release fatty acids enzymatically from their activated state, all cyanobacterial genomes available to date encode an activity most likely responsible for the activation of free fatty acids. The respective sequences are annotated as acyl-CoA synthetases. Conserved motifs in the amino acid sequence identify these proteins as members of the well-established superfamily of AMP-binding proteins. This protein family comprises several hundred amino acid sequences spreading across all organisms analyzed so far. The family members are annotated in the PROSITE database under entry number PS00455. Although these predicted fatty acid-activating enzymes of cyanobacteria are annotated as acyl-CoA synthetases due to their sequence similarity to proteins with such enzymatic activity, there is a much higher degree of similarity to certain AMP-binding proteins of plant origin with less-well-established function. These plant proteins are predicted to reside in chloroplasts and one member of this subgroup from Arabidopsis (Arabidopsis thaliana) designated as AAE15 was recently described as acyl-ACP synthetase. The conclusions were based on the comparison of enzymatic activity between plant extracts of wild-type and knockout mutant lines (Koo et al., 2005). Whereas the biological role of this activity remained largely elusive, it was shown that the capacity of plant extracts to elongate supplied medium fatty acids depended on AAE15 activity. Since the elongation of medium chain fatty acids in the plastid depends on the FAS requiring acyl ACPs, it was concluded that the fatty acids must have been activated by ACP. The elongated fatty acids ultimately appeared in membrane lipids. Together these findings suggested that AAE15 is an acyl-ACP synthetase.Besides encoding a protein homologous to AAE15 from Arabidopsis, cyanobacteria are also able to utilize exogenous fatty acids like it was shown for isolated chloroplasts. It is well established that feeding different cyanobacteria with free fatty acids results in the incorporation of these fatty acids into membrane lipids. For this process the activation of the fatty acids is believed to be essential. This causal relationship was clearly shown at least for other unicellular organisms like Escherichia coli and yeast (Saccharomyces cerevisiae) where the deletion of acyl-CoA synthetase activity resulted in the inability to utilize exogenous fatty acids (Overath et al., 1969; Knoll et al., 1995). It is not easy to assess how regularly cyanobacterial cells are exposed to exogenous free fatty acids in nature but at least for marine strains this is most likely a rather artificial situation. Therefore, it can be speculated that the capacity to activate free fatty acids might be of different relevance in the lipid metabolism of cyanobacteria in vivo.In this article, we investigated the fatty acid metabolism of cyanobacteria. We isolated candidate genes potentially encoding enzymes involved in fatty acid activation from the strains Synechocystis sp. PCC 6803 (hereafter Synechocystis) and Synechococcus elongatus PCC 7942 (hereafter Synechococcus) and performed heterologous expression in E. coli. The recombinant proteins were shown to possess acyl-ACP synthetase activity with broad substrate specificity. Knockout mutant strains deficient in acyl-ACP synthetase activity were characterized by secretion of endogenous free fatty acids into the culture medium. Combined with labeling experiments, the results suggest an essential role for acyl-ACP synthetase in fatty acid recycling in cyanobacteria.  相似文献   

12.
13.
The ethylmalonyl–coenzyme A pathway (EMCP) is a recently discovered pathway present in diverse α-proteobacteria such as the well studied methylotroph Methylobacterium extorquens AM1. Its glyoxylate regeneration function is obligatory during growth on C1 carbon sources like methanol. The EMCP contains special CoA esters, of which dicarboxylic acid derivatives are of high interest as building blocks for chemical industry. The possible production of dicarboxylic acids out of the alternative, non-food competing C-source methanol could lead to sustainable and economic processes. In this work we present a testing of functional thioesterases being active towards the EMCP CoA esters including in vitro enzymatic assays and in vivo acid production. Five thioesterases including TesB from Escherichia coli and M. extorquens, YciA from E. coli, Bch from Bacillus subtilis and Acot4 from Mus musculus showed activity towards EMCP CoA esters in vitro at which YciA was most active. Expressing yciA in M. extorquens AM1 led to release of 70 mg/l mesaconic and 60 mg/l methylsuccinic acid into culture supernatant during exponential growth phase. Our data demonstrates the biotechnological applicability of the thioesterase YciA and the possibility of EMCP dicarboxylic acid production from methanol using M. extorquens AM1.  相似文献   

14.
Microalgal biofuel is a promising solution to the decline of fossil fuels. However, algal fatty acid metabolism, the machinery producing the raw material for biofuels, remains poorly understood. The central unit of the fatty acid synthase (FAS) is the acyl carrier protein (ACP), which is responsible for holding the product. Fatty acid biosynthesis is initiated through posttranslational modification of the ACP by the phosphopantetheinyl transferase (PPTase). We identified two PPTases, PptC1 and PptC2, in the model alga Chlamydomonas reinhardtii by genome analysis and phylogenetic and structural comparison. Both PPTases are of Sfp-type, the archetypical PPTase type for non-ribosomal peptide and polyketide biosynthetic pathways in bacteria and cyanobacteria. In vitro analysis revealed that PptC2 has a broader substrate range than PptC1. Both PPTases were able to activate the cognate ACP of the type II FAS, while PptC2 also recognized ACP of Escherichia coli type II FAS and actinorhodin type II polyketide synthase. Besides FAS as PPTase target, the C. reinhardtii genome encodes a single type I PKS, and we hypothesize that PptC2 is responsible for its activation. Screening of the currently available microalgal genome data revealed that most green microalgae appear to carry two PPTases forming clusters with each C. reinhardtii PPTase, while microalgae of other divisions carry one or two PPTases and do not cluster in the pattern of the green algal data. This new understanding on the PPTases in microalgae shows that microalgae are already primed for biotechnological applications in contrast to other organisms. Thus, microalgae have great potential for metabolic engineering efforts in the realm of biofuel and high-value products including direct engineering of the fatty acid or secondary metabolism using the natural genomic reservoir and as biotechnological platform for heterologous expression.  相似文献   

15.
Biodiesel is produced worldwide as an alternative energy fuel and substitute for petroleum. Biodiesel is often obtained from vegetable oil, but production of biodiesel from plants requires additional land for growing crops and can affect the global food supply. Consequently, it is necessary to develop appropriate microorganisms for the development of an alternative biodiesel feedstock. Escherichia coli is suitable for the production of biodiesel feedstocks since it can synthesize fatty acids for lipid production, grows well, and is amenable to genetic engineering. Recombinant E. coli was designed and constructed for the production of biodiesel with improved unsaturated fatty acid contents via regulation of the FAS pathway consisting of initiation, elongation, and termination steps. Here, we investigated the effects of fabA, fabB, and fabF gene expression on the production of unsaturated fatty acids and observed that the concentration of cis-vaccenic acid, a major component of unsaturated fatty acids, increased 1.77-fold compared to that of the control strain. We also introduced the genes which synthesize malonyl-ACP used during initiation step of fatty acid synthesis and the genes which produce free fatty acids during termination step to study the effect of combination of genes in elongation step and other steps. The total fatty acid content of this strain increased by 35.7% compared to that of the control strain. The amounts of unsaturated fatty acids and cis-vaccenic acid increased by 3.27 and 3.37-fold, respectively.  相似文献   

16.
17.
Two acyl-acyl carrier protein (ACP) thioesterases were partially purified from developing seeds of Cuphea lanceolata Ait., a plant with decanoic acid-rich triacylglycerols. The two enzymes differ markedly in their substrate specificity. One is specific for medium-chain acyl-ACPs, the other one for oleoyl-ACP. In addition, these enzymes are distinct with regard to molecular weight, pH optimum and sensitivity to salt. The thioesterases could be separated by Mono Q chromatography or gel filtration. The medium-chain acyl-ACP thioesterase and oleoyl-ACP thioesterase were purified from a crude extract 29- and 180-fold, respectively. In Cuphea wrightii A. Gray, which predominantly contains decanoic a nd lauric acid in the seeds, two different thioesterases were also found with a similar substrate specificity as in Cuphea lanceolata.  相似文献   

18.
Sunflower, the fifth largest oilseed crop in the world, plays an important role in human diets. Recently, sunflower production in North America has suffered serious yield losses from newly evolved races of sunflower rust (Puccinia helianthi Schwein.). The rust resistance gene, designated R 14 , in a germplasm line PH 3 originated from a wild Helianthus annuus L. population resistant to 11 rust races. PH 3 has seedling with an extraordinary purple hypocotyl color. The objectives of this study were to map both the R 14 rust resistance gene and the purple hypocotyl gene-designated PHC in PH 3, and to identify molecular markers for marker-assisted breeding for sunflower rust resistance. A set of 517 mapped SSR/InDel and four SNP markers was used to detect polymorphisms between the parents. Fourteen markers covering a genetic distance of 17.0 cM on linkage group (LG) 11 were linked to R 14 . R 14 was mapped to the middle of the LG, with a dominant SNP marker NSA_000064 as the closest marker at a distance of 0.7 cM, and another codominant marker ORS542 linked at 3.5 cM proximally. One dominant marker ZVG53 was linked on the distal side at 6.9 cM. The PHC gene was also linked to R 14 with a distance of 6.2 cM. Chi-squared analysis of the segregation ratios of R 14 , PHC, and ten linked markers indicated a deviation from an expected 1:2:1 or 3:1 ratio. The closely linked molecular or morphological markers could facilitate sunflower rust-resistant breeding and accelerate the development of rust-resistant hybrids.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号