首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Adaptation of Ehrlich ascites tumor cells to serial cultivation in media with progressively elevated (hypertonic) NaCl content ("high NaCl"-tolerant cells) has resulted in progressive increases of the cellular activities of NAD-dependent glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), NAD-dependent malate dehydrogenase (EC 1.1.1.37), glutamate--oxalacetate transaminase (EC 2.6.1.1), NAD (P)-dependent glutamate dehydrogenase (EC 1.4.1.3), NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42). The activities of glutamate-pyruvate transaminase (EC 2.6.1.2.) and of glycolytic enzymes as phospho-fructokinase (EC 2.7.1.11), glyceraldehydephosphate dehydrogenase (EC 1.2.1.12) and lactate dehydrogenase (EC 1.1.1.27) were only slightly and not in progressive manner (in response to the progressive increase of the environmental NaCl concentration) affected. These changes are discussed with respect to a metabolic pattern of these "high NaCl"-tolerant cells which is compatible with increased energy requirements, especially for active cation transport. It is suggested that these increased cellular enzyme activities reflect an increased transfer of reducing equivalents across mitochondrial membranes (via the "glycerophosphate cycle and the malate-aspartate shuttle") and possibly a stimulated lipid metabolism. These alterations in the level of enzyme activities must be regarded asan adaptive cellular response to the "high NaCl" environment, since readaptation to growth in regular isotonic media resulted in a reversion to the enzyme pattern characteristic of the parent cells.  相似文献   

2.
The activities of several enzymes related to amino acid metabolism were investigated in senescing detached wheat leaves ( Triticum aestivum L. cv. Diplomat) in light and darkness and after kinetin treatment. Glutamine synthetase and glutamate synthase activities rapidly declined in darkness. In light, the decline of glutamate synthase activity was retarded, while the activity of glutamine synthetase remained high and even increased transitorily. Kinetin treatment counteracted the decline of the activities of both enzymes. The activity of glutamate dehydrogenase markedly increased during senescence, particularly in light, and kinetin treatment lowered its activity. The activities of glutamate-oxaloacetate and glutamate-pyruvate amino-transferases and of NADP-dependent isocitrate dehydrogenase also increased in detached wheat leaves in light. Kinetin treatment prevented the rise of these enzyme activities. In darkness, the activities of glutamate-oxaloacetate aminotransferase and NADP-dependent isocitrate dehydrogenase decreased slowly while the decline of glutamate-pyruvate aminotransferase activity was more rapid. The activity of NAD-dependent malate dehydrogenase decreased both in light and, more rapidly, in darkness. The pattern of changes of the enzyme activities provides an explanation for the amino acid transformations and the flow of amino nitrogen into transport metabolites in senescing leaves.  相似文献   

3.
Glutamine synthetase (EC 6.3.1.2) was localized within the matrix compartment of avian liver mitochondria. The submitochondrial localization of this enzyme was determined by the digitonin-Lubrol method of Schnaitman and Greenawalt (35). The matrix fraction contained over 74% of the glutamine synthetase activity and the major proportion of the matirx marker enzymes, malate dehydrogenase (71%), NADP-dependent isocitrate dehydrogenase (83%), and glutamate dehydrogenase (57%). The highest specific activities of these enzymes were also found in the matrix compartment. Oxidation of glutamine by avian liver mitochondria was substantially less than that of glutamate. Bromofuroate, an inhibitor of glutamate dehydrogenase, blocked oxidation of glutamate and of glutamine whereas aminoxyacetate, a transaminase inhibitor, had little or no effect with either substrate. These results indicate that glutamine metabolism is probably initiated by the conversion of glutamine to glutamate rather than to an alpha-keto acid. The localization of a glutaminase activity within avian liver mitochondria plus the absence of an active mitochondrial glutamine transaminase is consistent with the differential effects of the transaminase and glutamate dehydrogenase inhibitors. The high glutamine synthetase activity (40:1) suggests that mitochondrial catabolism of glutamine is minimal, freeing most of the glutamine synthesized for purine (uric acid) biosynthesis.  相似文献   

4.
Summary Hydrogenomonas H 16 synthetized two chromatographically distinct forms of glutamate dehydrogenase which differed in their thermolability. One glutamate dehydrogenase utilized NAD, the other NADP as a coenzyme.Low specific activity of NAD-dependent glutamate dehydrogenase was found in cells grown with glutamate as sole nitrogen source or in cells grown with a high concentration of ammonium ions. In the presence of a low concentration of ammonium ions or in a nitrogen free medium, the specific activity of the NAD-dependent enzyme increased. Corresponding to the formation of the NAD-dependent glutamate dehydrogenase the enzyme glutamine synthetase was synthesized. The ratio of NAD-dependent glutamate dehydrogenase to glutamine synthetase activity differed only slightly in cells grown with different nitrogen and carbon sources.The NADP-dependent glutamate dehydrogenase was found in high specific activity in cells grown with an excess of ammonium ions. Under nitrogen starvation the formation of the NADP-dependent glutamate dehydrogenase ceased and the enzyme activity decreased.  相似文献   

5.
The effect of salinity on C(4) photosynthesis was examined in leaves of maize, a NADP-malic enzyme (NADP-ME) type C(4) species. Potted plants with the fourth leaf blade fully developed were treated with 3% NaCl solution for 5d. Under salt treatment, the activities of pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent malate dehydrogenase (NADP-MDH) and NAD-dependent malate dehydrogenase (NAD-MDH), which are derived mainly from mesophyll cells, increased, whereas those of NADP-ME and ribulose-1,5-bisphosphate carboxylase, which are derived mainly from bundle sheath cells (BSCs), decreased. Immunocytochemical studies by electron microscopy revealed that PPDK protein increased, while the content of ribulose-1,5-bisphosphate carboxylase/oxygenase protein decreased under salinity. In salt-treated plants, the photosynthetic metabolites malate, pyruvate and starch decreased by 40, 89 and 81%, respectively. Gas-exchange analysis revealed that the net photosynthetic rate, the transpiration rate, stomatal conductance (g(s)) and the intercellular CO(2) concentration decreased strongly in salt-treated plants. The carbon isotope ratio (δ(13)C) in these plants was significantly lower than that in control. These findings suggest that the decrease in photosynthetic metabolites under salinity was induced by a reduction in gas-exchange. Moreover, in addition to the decrease in g(s), the decrease in enzyme activities in BSCs was responsible for the decline of C(4) photosynthesis. The increase of PPDK, PEPCase, NADP-MDH, and NAD-MDH activities and the decrease of NADP-ME activity are interpreted as adaptation responses to salinity.  相似文献   

6.
Metabolism of lactate as a carbon source by Pseudomonas citronellolis occurred via a nicotinamide adenine dinucleotide (NAD)-independent L-lactate dehydrogenase, which was present in cells grown on DL-lactate but was not present in cells grown on acetate, aspartate, citrate, glucose, glutamate, or malate. The cells also possessed a constitutive, NAD-independent malate dehydrogenase instead of the conventional NAD-dependent malate dehydrogenase instead of the conventional NAD-dependent enzyme in the tricarboxylic acid cycle. Both enzymes were particulate and used dichlorophenolindo-phenol or oxygen as an electron acceptor. In acetate-grown cells, the activity of pyruvate dehydrogenase and NAD phosphate-linked malate enzyme decreased, cells grown on glucose or lactate. This was consistent with the need to maintain a supply of oxalacetate for metabolism of acetate via the tricarboxylic acid cycle. Changes in enzyme activities suggest that gluconeogenesis from noncarbohydrate carbon sources occurs via the malate enzyme (when oxalacetate decarboxylase is inhibited) or a combination of the NAD-independent malate dehydrogenase and oxalacetate decarboxylase.  相似文献   

7.
Abstract. This paper describes the effect of prolonged treatments with red or blue light on the capacity of the milo ( Sorghum vulgare Pers.) shoot to respond to Pfr in subsequent darkness. Two groups of enzymes were studied. In group I (NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, NADP-GPD. EC 1.2.1.13 and ribulose-bisphosphate carboxylase, carboxylase, EC 4.1.1.39) enzyme formation is strongly enhanced by red light pulses (operating through phytochrome) whereas in group II (NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, NAD-GPD, EC 1.2.1.12 and NAD-dependent malate dehydrogenase, MDH. EC 1.1.1.37) enzyme formation hardly responds to red light pulses.
In group 1 a 24-h treatment with blue light (but not with red light) leads to a strong increase in responsivity to Pfr whereas in group II a 24-h treatment with blue or red light does not increase responsivity to Pfr in subsequent darkness.
The specific effect of blue light cannot be explained by an effect of light on gross protein synthesis. Rather, the data indicate that amplification of responsivity to Pfr by blue light is a specific process directly related to the mechanism of modulation of gene expression by phytochrome.  相似文献   

8.
NADP-dependent malic enzyme from grape berries is associated with NAD-dependent malate dehydrogenase. A two step procedure, involving affinity chromatography on 2′,5′-ADP-Sepharose 4B, followed by gel- permeation on Bio-Gel A- 1.5 m, was used to separate malic enzyme from malate dehydrogenase and other proteins. The yield was ca 60% Malic enzyme and malate dehydrogenase migrated respectively as three bands and one band during disc electrophoresis in polyacrylamide gel. The MW resulting from gel-permeation was 220 000 for malic enzyme and 53 000 for malate dehydrogenase.  相似文献   

9.
Mycelium of Agaricus bisporus strain Horst U1 was grown in batch cultures on different concentrations of ammonium, glutamate, and glucose to test the effect of these substrates on the activities of NADP-dependent glutamate dehydrogenase (NADP-GDH, EC 1.4.1.4), NAD-dependent glutamate dehydrogenase (NAD-GDH, EC 1.4.1.2.), and glutamine synthetase (GS, EC 6.3.1.2.). When grown on ammonium, the activities of NADP-GDH and GS were repressed. NAD-GDH activity was about 10 times higher than the activities of NADP-GDH and GS. At concentrations below 8 mM ammonium, NADP-GDH and GS were slightly derepressed. When glutamate was used as the nitrogen source, activities of NADP-GDH and GS were derepressed; compared with growth on ammonium, the activities of these two enzymes were about 10 times higher. Activities of GDHs showed no variation at different glutamate concentrations. Activity of GS was slightly derepressed at low glutamate concentrations. Growth of A. bisporus on both ammonium and glutamate as nitrogen sources resulted in enzyme activities comparable to growth on ammonium alone. Activities of NADP-GDH, NAD-GDH, and GS were not influenced by the concentration of glucose in the medium. In mycelium starved for nitrogen, the activities of NADP-GDH, NAD-GDH, and GS were derepressed, while in carbon-starved mycelium the activity of GS and both GDHs was repressed.  相似文献   

10.
The activity of the enzymes of alcoholic and lactic-acid fermentation: pyruvate decarboxylase (PDC, EC 4.1.1.1), alcohol dehydrogenase (ADH, EC 1.1.1.1), lactate dehydrogenase (LDH, EC 1.1.1.27) and the enzymes of malic acid metabolism: phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.23), NAD-dependent malate dehydrogenase (NAD-MDH, EC 1.1.1.37), and NADP-dependent malic enzyme (NADP-ME, EC 1.1.1.40) involved in the operation of biochemical pH-stat was investigated in the root tips of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) under hypoxia and anoxia. Exposures lasted for 6, 12, and 18 h. The most pronounced response was detected for the enzymes of alcoholic fermentation. The activation of ADH and PDC in wheat occurred only under hypoxia, whereas in rice it was detected both under hypoxia and anoxia. The activation of LDH in wheat occurred under hypoxia, and in rice, the activity of this enzyme was slightly enhanced. The activity of the enzymes of malic acid metabolism did not change except in wheat root tips under hypoxia when PEPC activity decreased and NADP-ME activity simultaneously rose. The role of biochemical pH-stat in the regulation of cytoplasmic pH in plant cells under oxygen deficit and the mechanisms for regulating the activities of enzymes involved in biochemical pH-stat are discussed as well as the interaction between biochemical pH-stat and other mechanisms maintaining pH of plant cells. The results are analyzed within a context of intracellular pH regulation.  相似文献   

11.
The segmentation of the proximal tubules in the kidney of the female rat was studied by means of enzyme histochemical reactions and the results compared with those observed in male and recently described by Jacobsen and J0rgensen (1973 a). Reactions were performed for the following soluble, coezyme-dependent oxido-reductases: glucose 6-phosphate dehydrogenase, alpha-glycerophosphate dehydrogenase, 3 alpha-hydroxysteroid dehydrogenase, NAD-as well as NADP-dependent isocitrate dehydrogenases, NAD-dependent malate dehydrogenase, NADP-dependent, decarboxylating malate dehydrogenase, uridine diphosphate glucose dehydrogenase. Measures were taken to reduce enzyme diffusion and eliminate interference from tissue tetrazolium reductases. Furthermore, reactions were performed for a number of less soluble or insoluble enzymes: glucose 6-phosphatase, mitochondrial alpha-glycerophosphate dehydrogenase, beta-hydroxybutyrate dehydrogenase, succinate dehydrogenase and tetrazolium reductases. In the proximal tubules of the female rat all enzymes studied--except beta-hydroxybutyrate dehydrogenase--showed segmental differences, most of them clearly revealing three segments. Sex differences were found concerning all enzymes except uridine diphosphate glucose dehydrogenase and NADP-dependent isocitrate dehydrogenase. The most pronounced sex-related differences were seen in the third segment in which part the male rat showed highest activity in respect to tetrazolium reductases, NAD-dependent isocitrate dehydrogenase, succinate dehydrogenase, beta-hydroxybutyrate dehydrogenase, 3 alpha-hydroxysteroid dehydrogenase and glucose 6-phosphate dehydrogenase and the female in respect to glucose 6-phosphatase, alpha-glycerophosphate dehydrogenases, and NADP-dependent, decarboxylating malate dehydrogenase. A few of the enzymes exhibited minor sex differences in the first two segments.  相似文献   

12.
Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate puruvate transaminase and glutamate oxaloacetate transaminase have been assayed in developing testa-pericarp and endosperm of two wheat varieties, namely Shera (11.6% protein) and C-306 (9.8% protein). On per organ basis, activities of all the enzymes studied, except glutamine synthetase, increased during development. Glutamine synthetase activity decreased during development in the testa-pericarp, whereas, no glutamine synthetase activity could be detected in endosperm of either variety at any stage of development. Compared to testa-pericarp, endosperm had higher activities of glutamate synthase and glutamate pyruvate transaminase. On the whole, enzyme activities in Shera were higher, as compared to C-306. Developmental patterns and relative levels of enzyme activities in the two varieties were more or less the same, when expressed on dry weight basis or as specific activities. The results suggest that ammonia assimilation in developing wheat grain takes place by the glutamate dehydrogenase pathway in the endosperm; and both by the glutamate dehydrogenase and glutamine synthetase—glutamate synthase pathways in the testa-pericarp.  相似文献   

13.
The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed. New address: Institut für Pflanzenphysiologie und Zellbiologie, Freie Universität Berlin, Königin-Luise-Straße 12-16a. D-1000 Berlin 33  相似文献   

14.
Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen while synthesis of the enzyme was repressed and that present was adenylylated in cultures with excess nitrogen.NADP-and NAD-dependent glutamate dehydrogenase could be separated by column chromatography and showed molecular weights of 110,000 and 220,000, respectively. Synthesis of the NADP-dependent glutamate dehydrogenase is repressed under nitrogen limitation and by growth on glutamate. In contrast, NAD-dependent glutamate dehydrogenase is derepressed by glutamate. Glutamate synthase is repressed by glutamate but not by excess nitrogen.  相似文献   

15.
Two alcohol dehydrogenases (alcohol: NAD oxidoreductase, EC 1.1.1.1 and alcohol: NADP oxidoreductase, EC 1.1.1.2) were partially purified from extracts of strawberry seeds by conventional methods. Some of physical, chemical and kinetic properties of the enzymes are described. On the basis of gel filtration, the molecular weights were estimated to be approximately 78,000 for NAD-dependent enzyme and 82,000 for NADP-dependent enzyme. Thiol-reacting compounds inhibited both enzymes. NAD-dependent alcohol dehydrogenase reacted only with aliphatic alcohols and aldehydes, while aromatic and terpene alcohols and aldehydes were the better substrates for NADP-dependent alcohol dehydrogenase than aliphatic alcohols and aldehydes.  相似文献   

16.
Summary The development of increased activities of ribulosediphosphate carboxylase (EC 4.1.1.39) and of phosphoribulokinase (EC 2.7.1.19) in greening bean leaves was completely inhibited by D-threo chloramphenicol but unaffected by L-threo chloramphenicol. This indicates that these enzymes are synthesized by the ribosomes of the developing plastids. A different mechanism appears to be responsible for the development of activity of NADP-dependent triosephosphate dehydrogenase (EC 1.2.1.13) where the D-threo isomer gave 45% inhibition and the L-threo isomer gave 18% inhibition. Thus both specific (D-threo isomer) and unspecific (both isomers) inhibition occurred. It is suggested that the development of NADP-dependent triosephosphate dehydrogenase activity may result from the allosteric activation, in the plastids, of the NAD-dependent enzyme (Müller et al., 1969) which has been synthesized by cytoplasmic ribosomes. Neither isomer inhibited the development of five other enzymes of the photosynthetic carbon cycle namely ribosephosphate isomerase (EC 5.3.1.6), phosphoglycerate kinase (EC 2.7.2.3), triosephosphate isomerase (EC 5.3.1.1), tructosediphosphate aldolase (EC 4.1.2.13) and transketolase (EC 2.2.1.1), but there was a significant stimulation of the activity of transketolase by D-threo chloramphenicol.  相似文献   

17.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

18.
Mitochondria from Orobanche were analysed for the activities of aconitate hydratase, isocitrate dehydrogenase, succinate dehydro-genase, fumarate hydratase, malate dehydrogenase, NADH oxidase, substrate-cytochrome c oxidoreductases, glutamate dehydrogenase, aminotransferases, ATPase and “malic” enzyme. The specific activities of isocitrate dehydrogenase, NADH oxidase, substrate-cytochrome c oxidoreductases and glutamate dehydrogenase in the mitochondria) fraction from parasite tissue compared favourably with those reported for most of the mitochondria from growing and storage tissues. Succinate dehydrogenase, fumarate hydratase and aspartate aminotransferase were of intermediate activity, while aconitate hydratase and malate dehydrogenase had rather low activity, and “malic” enzyme had very low activity in comparison with other preparations. The relevance of these findings in relation to mitochondrial metabolism in the parasite is discussed. No evidence was obtained to suggest any basic abnormality in the biochemical properties of the mitochondria from Orobanche centua which may be correlated with its obligatorily parasitic existence.  相似文献   

19.
The levels of several enzymes have been studied during sporulation of Saccharomyces cerevisia. The specific activities of ribonuclease and aminopeptidase I raised several-fold after transfer of the cells to sporulation medium, whereas the specific activities of phosphofructokinase, glucose-6-phosphate dehydrogenase, tryptophan synthase and pyruvate decarboxylase were not significantly altered. The specific activities of NAD-dependent glutamate dehydrogenase, isocitrate lyase, malate dehydrogenase and fructose bisphosphatase all decreased from the onset of sporulation. The inactivation of these latter enzymes was inhibited by cycloheximide and by inhibitors of energy metabolism. Hexokinase, alcohol dehydrogenase and glutamate oxaloacetate transaminase were partially lost from the cells during the period of ascus maturation. None of the enzyme changes observed proved to be 'sporulation-specific' in that it occurred exclusively in sporulating diploid yeast cells. Therefore it is postulated that the meiotic events and the metabolic changes required for ascospore formation are under separate genetic control in this organism. During sporulation, the cellular content of cytochromes b, c, and aa3 was reduced to 20% or less of that present in vegetative derepressed cells. Since the relative percentage of total to cycloheximide-insensitive mitochondrial protein synthesis was not significantly altered throughout sporulation, and the pattern of mitochondrially synthesized polypeptides was rather similar both in vegetative and in sporulating cells, it appeared that not only degradation but also synthesis and therefore turnover of the mitochondrially coded polypeptides of cytochromes b and aa3 took place during sporulation. The activity ratio of cytochrome c oxidase to F1-ATPase in submitochondrial particles isolated from vegetative cells and from purified asci was almost identical. This indicates that the loss of membrane-bound mitochondrial cytochromes during sporulation is probably due to a nonselective degradation of inner mitochondrial membrane proteins.  相似文献   

20.
1. Changes in the activities of acetyl-CoA carboxylase (EC 6.4.1.2), phosphofructokinase (EC 2.7.1.11), aldolase (EC 4.1.2.13), extramitochondrial aconitate hydratase (EC 4.2.1.3) and NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) have been measured in the livers of developing rats from late foetal life to maturity. 2. The effect of altering the weaning time on some enzymes associated with lipogenesis has been studied. Weaning rats at 15 days of age instead of 21 days results in an immediate increase in the activity of ;malic' enzyme (EC 1.1.1.40) whereas the activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and ATP citrate lyase (EC 4.1.3.8) did not increase until 4-5 days and acetyl-CoA carboxylase 2-3 days after early weaning. Weaning rats on to an artificial-milk diet led to complete repression of the rise in activity of hepatic enzymes associated with lipogenesis normally found on weaning, except for ;malic' enzyme, which increased in activity after 20 days of age. 3. The effect of intraperitoneal injections of glucagon, cortisol, growth hormone and thyroxine on the same hepatic enzymes has been investigated. Only thyroxine had any effect on enzyme activities and caused a 20-fold increase in ;malic' enzyme activity and a twofold increase in ATP citrate lyase activity. 4. The activities of hepatic glucose 6-phosphate dehydrogenase and ;malic' enzyme are higher in adult female than in adult male rats and it has been shown that this sex difference in enzyme activities is due to both male and female sex hormones. 5. Hepatic malate, citrate, pyruvate, glucose 6-phosphate and phosphoenolpyruvate concentrations have been measured throughout development. 6. The results are discussed in relation to the dietary and hormonal control of hepatic enzyme activities during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号