首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Theriogenology》2015,83(9):1241-1245
A single dose of PGF2α does not consistently induce luteolysis in the equine CL until at least 5 days after ovulation, leading to the erroneous assumption that the early CL is refractory to the luteolytic effects of PGF2α. We hypothesized that serial administration of PGF2α in early diestrus would induce a return to estrus similar to mares treated with a single injection in mid-diestrus, and fertility of the induced estrus would not differ. The objectives of the study were to evaluate the effects of the 2 approaches as reflected by: (1) concentrations of plasma progesterone; (2) interovulatory and treatment-to-ovulation intervals; (3) the proportion of mares pregnant after artificial insemination. The study consisted of a balanced crossover design in which 10 reproductively normal Quarter Horse Mares were exposed to 2 treatments on 2 consecutive reproductive cycles. At detected ovulation (Day 0), mares were randomly allotted to 1 of 2 treatment groups: I, mid-diestrus treatment, administration of a single 10-mg dose of dinoprost tromethamine (PGF2α) im on Day 10; II, early diestrus treatment, administration of 10-mg PGF2α im twice daily on Days 0, 1, and 2 and once daily on Days 3 and 4. Mares in estrus and with a follicle 35 mm or greater in diameter were artificially inseminated with at least 2 billion motile sperm from a fertile stallion. Pregnancy was defined as detection of a growing embryonic vesicle on 2 consecutive examinations approximately 14 days after ovulation. Serial plasma samples were collected throughout the study period, and concentration of plasma progesterone was determined by RIA. A mixed-model ANOVA for repeated measures was used to analyze hormonal data. Interovulatory and treatment-to-ovulation intervals were compared by a paired t test and fertility by a McNemar chi-square analysis. All mares in group I underwent luteolysis after PGF2α administration denoted by mean (±SD) concentration of plasma progesterone of 0.25 ± 0.21 ng/mL detected 2 days after treatment. In group II, mean concentration of plasma progesterone remained below 1.0 ng/mL during treatment and until the onset of the next estrus. The mean interovulatory interval in group I was 18.5 ± 2.0 days compared with 13.1 ± 3.7 days in group II (P < 0.01). Treatment-to-ovulation intervals were 8.5 ± 2.0 days and 13.1 ± 3.7 days for groups I and II, respectively (P < 0.05). In both groups, 9 of 10 mares were pregnant (P = 1.0). Serial PGF2α administration beginning at ovulation consistently prevented luteal function in 10 of 10 mares in the present study without adversely affecting pregnancy rate of post-treatment cycles.  相似文献   

2.
Progesterone and estradiol 17-beta in poly (DL-lactide) microspheres were used to control estrus and ovulation in mares after luteolysis was induced by prostaglandin F(2)infinity. Mares were given a single intramuscular injection of biodegradable poly (DL-lactide) microspheres, 1 day following prostaglandin treatment, containing no hormones (control), 0.625 g progesterone and 50 mg estradiol (low dose), 1.25 g progesterone and 100 mg estradiol (medium dose), or 1.875 g progesterone and 150 mg estradiol (high dose; n=15 mares per group). Mares treated with the low dose had significantly longer intervals (P<0.05) to estrus and ovulation than the control mares; however, low dose mares had shorter intervals (P<0.05) to estrus than high dose mares and shorter intervals to ovulation than medium and high dose mares. Regression analysis indicated that the medium dose was sufficient for maximizing interval to ovulation while the high dose maximized interval to estrus. All groups of mares exhibited similar (P>0.05) post-treatment estrus lengths. A clinical response scoring system based on synchrony of both estrus and ovulation within a treatment group was also used to measure the effectiveness of treatments on control of estrus and ovulation. Clinical response scores did not differ (P>0.05) among treatment groups. Mares were randomly assigned for insemination at the beginning of the first post-treatment estrus. Rates for embryo recovery performed by uterine lavage 7 days post-ovulation did not differ (P>0.05) among groups. Concentrations of serum progesterone increased in mares receiving progesterone and estradiol microspheres. At 10 to 14 days post-injection of microspheres, progesterone concentrations were higher (P<0.05) and remained above 1 ng/ml in the mares receiving the high dose. Progesterone concentrations were also higher (P<0.05) on Days -3 to -1 (Day 0 = day of post-treatment ovulation) in mares receiving the high dose when compared to control mares. Gonadotropin concentrations were suppressed (P<0.05) in the medium and high dose groups.  相似文献   

3.
Six ovariectomized mares were divided into 3 groups to determine the effects of exogenous progesterone in oil and repositol progesterone on plasma progesterone concentrations. Progesterone in oil was administered in 7 daily injections in Exp. I. Progesterone concentrations were not maintained greater than 1.0 ng/ml for 24 h with 50 mg/day. However, they remained greater than 1.0 ng/ml during the last 4 days of 100 mg/day and greater than 1.5 ng/ml throughout the injection sequence of 200 mg/day. Repositol progesterone was administered on Days 1 and 7 in Exp. II. At 500 mg, progesterone concentrations peaked in 6 h but returned to near 1.0 ng/ml in 2 days. At 1000 mg and 2000 mg, plasma progesterone was maintained at approximately 2.0 and 4.0 ng/ml respectively for 7 days after injection on Day 1 and was 1.5 and 3.5 ng/ml respectively, 11 days after injection on Day 7. An indication of a cumulative effect on plasma progesterone was observed following repeated dosages of both progesterone in oil and repositol progesterone.  相似文献   

4.
The objective of this study was to determine if the primary circulating metabolite of PGF2alpha, 13,14-dihydro-15-keto-PGF2alpha (PGFM), is biologically active and would induce luteolysis in nonpregnant mares. On Day 9 after ovulation, mares (n = 7/group) were randomly assigned to receive: 1) saline control, 2) 10 mg PGF2alpha or 3) 10 mg PGFM in 5 mL 0.9% sterile saline i.m. On Days 0 through 16, blood was collected for progesterone analysis. In addition, blood was collected immediately prior to treatment, hourly for 6 h, and then at 12 and 24 h after treatment for progesterone and PGFM analysis; PGFM was measured to verify that equivalent amounts of hormone were administered to PGF2alpha- and PGFM-treated mares. Mares were considered to have undergone luteolysis if progesterone decreased to < or = 1.0 ng/mL within 24 h following treatment. Luteolysis was induced in 0/7 control, 7/7 PGF2alpha-treated, and 0/7 PGFM-treated mares. There was no difference (P>0.1) in the occurrence of luteolysis in control and PGFM-treated mares. More (P<0.001) PGF2alpha-treated mares underwent luteolysis than control or PGFM-treated mares. There was no difference (P>0.1) in progesterone concentrations between control and PGFM-treated mares on Days 10 through 16. Progesterone concentrations were lower (P<0.01) on Days 10 through 14 in PGF2alpha-treated compared with control and PGFM-treated mares. There was no difference (P>0.05) in PGFM concentrations between PGF2alpha- and PGFM-treated mares; PGFM concentrations in both groups were higher (P<0.001) than in control mares. These results do not support the hypothesis that PGFM is biologically active in the mare, since there was no difference in corpora luteal function between PGFM-treated and control mares.  相似文献   

5.
To evaluate the technique of ultrasound-guided luteal injection in mares, PGF2alpha was administered under ultrasound guidance to horse mares (n = 7 to 9 per group) on Day 9 postovulation via either a systemic (i.m.; zero, 0.01, 0.1, or 5 mg/dose) route or a local intraluteal (i.l.; zero, 0.01 or 0.1 mg/dose) route. The luteolytic efficacy of each treatment was determined based on post-treatment decreases in progesterone concentration, interval to uterine edema (IE) and interovulatory interval (IOI). Local administration of PGF2alpha directly into the CL consistently induced luteolysis, at doses up to 50-fold lower than the lowest effective systemic dose. Significant decreases in IOI and IE occurred in mares treated with 5 mg PGF2alpha i.m. or 0.1 mg PGF2alpha i.l., but did not occur in mares treated with 0.1 or 0.01 mg PGF2alpha i.m., 0.01 mg PGF i.l., vehicle i.l. or vehicle i.m.. Progesterone concentrations were reduced to less than 10% of pretreatment values by two days post treatment in mares treated with 5 mg PGF2alpha i.m. or 0.1 mg PGF2alpha i.l.. PGF2alpha doses of 0.1 mg i.m. and 0.01 mg i.l. were associated with smaller but significant progesterone decreases (to 66% and 46% of pre-treatment values, respectively) by two days post treatment. Progesterone values after administration of i.l. vehicle did not differ from pre-treatment values by two days post treatment, but were significantly lower (53% of pre-treatment values) by four days post treatment. Intramuscular treatment with vehicle or 0.01 mg of PGF2alpha did not significantly reduce progesterone concentrations below pretreatment values. Overall, the minimum effective luteolytic dose of PGF2alpha given intraluteally was between 0.01 and 0.1 mg. Based on the results of this study, ultrasound-guided i.l. injection appears to be a repeatable method for studying the direct effect of other chemicals on luteal function. However, the current procedure carries some risk, since three i.l. injections were associated with ovarian abscesses.  相似文献   

6.
Five mares were administered 0.5 to 2.0 mg of a prostaglandin analogue, RS 9390 (Syntex), during nine estrous cycles in February and March. Luteolysis as measured by peripheral plasma progesterone occurred in four cycles, transitory luteolysis following 0.5 mg RS 9390 in two cycles, while functional corpora lutea were not present in three cycles. In 8 out of 9 of these cycles the mares returned to estrus 1.5 to 5 days following treatment. It appears that RS 9390 can be used as a regulator of cycle length in mares.  相似文献   

7.
A prostaglandin F analogue caused luteolysis in normal cycling non-lactating mares, and lactating mares (treated after the foal estrus). Effective doses ranged from 1.0 to 4.0mg given as a single subcutaneous injection 8–10 days after ovulation. A dose of 0.5mg was ineffective, hence the dose-response relationship was steep, indicative of a quantal type of response. Mares usually returned to estrus within 2–4 days and ovulated by 7 days after treatment. Mares bred naturally or by artificial insemination at the induced estrus and ovulation were fertile. The compound was without side-effects, and hence should be of value in manipulating the estrous cycle of the mare.  相似文献   

8.
Twelve pregnant mares were used in a switchback design with two groups of six mares each. On day 255 of gestation, group A was administered repository progesterone (250 mg, IM) and group B progesterone in sesame oil (250 mg, IM). Jugular vein plasma was taken 15 min pre-injection and post-injection at 30 min, 1, 3, 6, 9, 12, and 24 hours. Additional samples were taken on days 2, 3, 4, 6, and 8. Both groups were then assigned to the opposite treatment on day 270 of gestation. Concentrations of plasma progestogens after injection with progesterone in sesame oil were not different (P>.05) from values obtained using repository progesterone through the 8 days studied. Mean progestogen concentrations after injection of progesterone in sesame oil were, however, consistently higher through 48 hr than those given repository progesterone. Concentrations of progestogens were not different (P>.05) from pre-injection concentrations by day 6 post-injection using either vehicle.  相似文献   

9.
A direct enzyme immunoassay (EIA) for non-specific urinary progesterone (Po) metabolites, utilizing a non-specific monoclonal antibody against pregnanediol-3-glucuronide, was evaluated for the purpose of assessing luteal function in equids. Urinary pregnanediol-3-glucuronide (PdG) and immunoreactive PdG-like conjugate (iPdG) concentrations, indexed by creatinine, were compared to plasma Po concentrations in non-conceptive ovarian cycles through two ovulations in four mares. High-performance liquid chromatography (HPLC) of urine from lutealphase mares and a pregnant zebra revealed an absence of significant concentrations of PdG and the presence of at least three immunoreactive compounds, all of which were more polar than PdG. The concentration of iPdG in the mare ranged from a nadir of approximately 3 ng/mg Cr at the time of ovulation to nearly 400 ng/mg Cr at the mid-luteal-phase peak and paralleled plasma Po concentrations. This non-radiometric assay for iPdG permits the assessment of ovulation, luteal formation and function, and luteolysis in unprocessed urine samples from domestic mares. Data from a single zebra indicate this approach also will permit simplified and non-invasive longitudinal studies of ovarian function among a wide range of Equidae.  相似文献   

10.
The objective of this study was to determine the effect of the alpha(2)-adrenergic agonist, xylazine, on interovulatory interval and progesterone concentrations in the horse mare. Mares were assigned to one of four treatments: Group 1 (controls) received an intramuscular injection (i.m.) of 5 cc saline (n=6), Group 2 received 10 mg prostaglandin F(2alpha) (PGF(2alpha)) i.m. (n=5), Group 3 received 500 mg xylazine i.m. (n=6) and group 4 received an intravenous injection (i.v) of 350 mg xylazine (n=6). Treatment was administered on Day 10 of the estrous cycle (Day 0 = Day of detected ovulation). There was no difference in length of interovulatory interval between PGF(2alpha)-treated mares and control mares (mean +/- SEM; 18.8 +/- 1.0 versus 21.7 +/- 1.6 d). When compared with either xylazine-treated group, PGF(2alpha)-treated mares had a shorter interovulatory interval (18.3 +/- 1.0 d versus 22.2 +/- 0.6 and 22.8 +/- 1.3 d, respectively; P < 0.05). There was no difference in the length of interovulatory interval between control mares and either xylazine-treated group. At the time of treatment all mares had progesterone concentrations > 10 ng/ml, therefore the onset of luteolysis was defined as the day of the estrous cycle when progesterone concentrations decreased below 10 ng/ml. In PGF(2alpha)-treated mares, this event occurred earlier than in any other group (Day 11.2 +/- 0.2 of the estrous cycle versus 16.0 +/- 1.3 for control, Day 15.7 +/- 0.2 for Group 3 and Day 15.2 +/- 0.6 for Group 4; P < 0.002). It was concluded that a single treatment with xylazine, either by an intramuscular or intravenous route, had no significant effect on interovulatory interval or progesterone concentrations in horse mares.  相似文献   

11.
The secretory patterns of progesterone in relation to concentrations of 15-ketodihydro-PGF(2alpha) (PGFM) during the period of luteolysis or of maternal recognition of pregnancy were determined in the blood of llamas mated either with an intact or a vasectomized male. The ability of flunixin meglumine (FM) to postpone luteolysis in non-pregnant llamas was investigated by injecting the drug intravenously every 6 h at a dose of 2.2 mg/kg from days 6 to 12 post-copulation into a group of non-pregnant llamas. A pulsatile pattern of prostaglandin release was recorded during luteolysis in non-pregnant llamas, giving further support to the hypothesis that PGF(2alpha) is the luteolytic agent in llamas. The mean number of peaks per animal rose from 0.3 on day 7 to 3.8 on day 10 and then declined to 1.1 on day 12 with corresponding mean peak amplitude changing from 465 to 1234 and 566 pmol l(-1), respectively. In pregnant llamas, prostaglandin pulsatile release also occurred. The mean number of peaks per animal rose from 0.4 on day 7 to 0.8 on day 10 and then declined to 0.2 on day 11 and 0.6 on day 12, with corresponding mean peak amplitude changing from 494 to 676, 388 and 547 pmol l(-1), respectively. The transient decrease and subsequent recovery in progesterone concentrations was observed to occur in connection with prostaglandin release during early pregnancy. Oestradiol-17beta plasma peak concentrations attained after luteolysis were significantly higher than those recorded in early pregnant animals (around 30 pmol l(-1) and ll pmol l(-1)). Concentrations of PGFM decreased rapidly after the first administration of FM and remained low throughout the first 2 days of treatment. Thereafter, pulsatile release of prostaglandins started, and luteolysis proceeded; but a delay of 1-1.5 days in the progesterone decline was observed. Thus, it might be suggested that a higher dose and/or a more intensive injection schedule is required in llamas than in other ruminants to prevent luteolysis.  相似文献   

12.
One-minute continuous ultrasonic scans of longitudinal sections of the uterine body were videotaped, and contractility scores (1 to 5, minimal to maximal contractility) were assigned without knowledge of mare identity, day of the estrous cycle or pregnancy status. Contractility was assessed, and plasma progesterone concentrations were determined for each of 3 daily examinations (at 0800, 1600 and 2400 hours) from Day 9 to Day 19 (Day 0 = day of ovulation). For both the nonbred (n=11) and pregnant (n=11) mares, there was no effect of hour of scan on the extent of uterine contractility. When data for the nonbred mares were normalized to the onset of luteolysis (defined for each mare as the first >/=25% decrease in plasma progesterone concentrations between successive samples), there was an abrupt increase (P<0.05) in contractility 24 hours prior to the onset of luteolysis. Contractility was also assessed daily in 20 nonbred and 27 pregnant mares from Day 0 to Day 17. For the nonbred mares, a biphasic profile in contractility occurred during the estrous cycle as indicated by the following significant changes: a decrease between Days 0 and 2, an increase between Days 2 and 4, a plateau between Days 4 and 7, a decrease between Days 7 and 11, an increase between Days 11 and 13, and a decrease between Days 14 and 16. For pregnant mares, contractility increased (P<0.05) prior to the late-diestrous increase for nonbred mares. In addition, a significant reduction in contractility was detected on Day 5 in these mares compared with that in the nonbred mares. Contractility in the uterine body in 7 mares was assessed every 5 minutes after departure of the embryonic vesicle from the uterine body. Levels of contractility in the uterine body were lower (P<0.05) 55 minutes after the vesicle had exited the body than 相似文献   

13.
We have monitored plasma concentrations of oestradiol and progesterone after insemination in dairy cows, and investigated the effects of injection with 10 μg of the gonadotrophin-releasing hormone (GnRH) analogue buserelin, a treatment known to result in an improvement in conception rate. Animals were injected intramuscularly on Day 12 after insemination with 2.5 ml of either control saline (n = 29) or buserelin (n = 26). Blood samples were collected from Day 8 to Day 17 and milk samples from the day of insemination until Day 30. On the basis of milk progesterone profiles, in the control group 15 cows remained pregnant (control pregnant) and 11 underwent luteolysis (control not pregnant), whereas in the treated group 13 cows remained pregnant (treated pregnant) and 13 underwent luteolysis (treated not pregnant). Three cows were excluded from the control group owing to high progesterone at insemination or failed ovulation. In both the control and treated groups mean plasma progesterone concentration was significantly (P < 0.05) lower in non-pregnant cows than in pregnant ones from Day 12 post-insemination. However, no significant effect of buserelin treatment on plasma progesterone concentration was detected. In the control group the plasma oestradiol concentration was similar in the pregnant and non-pregnant cows. In the treated group, plasma oestradiol concentration in the non-pregnant cows was similar to that in the control group, whereas in the treated pregnant cows the plasma oestradiol concentration showed a significant (P < 0.05) decline after treatment. As oestradiol is known to stimulate the development of the luteolytic mechanism at this time, we suggest that buserelin is acting to reduce the strength of the luteolytic drive in some cows, thus improving the chance of the embryo being able to prevent luteolysis.  相似文献   

14.
In previous studies, transrectal color Doppler sonography was used to demonstrate an increase in genital blood flow resistance in subfertile mares. The objectives of the present study were to determine the effects of an anticoagulant (acetylsalicylic acid) and a vasodilator (captopril) on uterine and ovarian perfusion and plasma progesterone concentrations in cycling mares. From Day 1 to 11 of an estrous cycle (Day 0=day of ovulation following prostaglandin-induced luteolysis), five Trotter mares were given 2500 mg lactose, 2500 mg ASA, or 50 mg captopril twice daily in their feed (one compound per cycle, in random order). Transrectal color Doppler sonography was used to examine both uterine arteries and the ovarian artery ipsilateral to the corpus luteum once daily, immediately prior to administration of the drug. Blood flow resistance was determined semiquantitatively using the pulsatility index (PI) and plasma progesterone concentrations were determined with an enzyme immunoassay. Compared to the placebo, both ASA and captopril decreased mean PI values of both uterine arteries of all mares. On average, ASA decreased the PI of the uterine arteries by 25%; this was more (P<0.05) than the average decrease (13%) caused by captopril. Both drugs decreased (P<0.05) blood flow resistance in the ovarian arteries, although there was no difference (P<0.05) in their efficacy. In addition, both ASA and captopril increased (P<0.0001) plasma progesterone concentrations (18 and 17%, respectively). In conclusion, either ASA or captopril improved uterine and ovarian perfusion; however the effects on fertility were not determined.  相似文献   

15.
Pregnancy rates, length of interovulatory intervals, and progesterone concentrations were examined in mares which had ultrasonically detected collections of fluid in the uterine lumen and in mares which lost the embryonic vesicle during Days 11 to 15 and did not become pseudopregnant. In mares with embryonic loss, the loss rate for mares with re-established pregnancies (9 18 ) was greater (P<0.05) than the loss rate for all pregnancies (38 154 ), indicating repeatability. Pregnancy rates were higher (P<0.01) in controls (100 177 ) than in mares with intrauterine fluid collections (2 34 ) or mares with embryonic loss (10 33 ), excluding the pregnancy associated with embryonic loss. The mean length (days) of the interovulatory interval was reduced (P<0.05) in mares with intrauterine fluid collections (20.4 +/-0.9) and in mares with embryonic loss both for the intervals in which loss occurred (19.6 +/-0.7) and for intervals in which pregnancy was not detected (21.0 +/-1.0; controls, 23.5 +/-0.6). Mean progesterone concentration (ng/ml) on Day 7 was lower (P<0.05) in mares with intrauterine fluid collections (8.8 +/-1.8) and in mares with embryonic loss (12.1 +/-1.1) than in pregnant controls (17.2 +/-0.9) and nonpregnant controls (17.5 +/-0.1). The embryonic loss seemed attributable to uterine-induced luteolysis in association with uterine inflammation, but the possibility of involvement of a primary luteal inadequacy or other factors in at least some of the mares was not eliminated.  相似文献   

16.
Control of the equine estrous cycle was studied by suppressing gonadotropin secretion by administration of a GnRH antagonist to cyclic pony mares. Four mares received vehicle (control cycle) or a GnRH antagonist, Antarelix (100 microg/kg) on Day 8 of diestrus, and blood samples were collected at 15-min intervals from 0 to 16 h, 24 to 36 h, and daily until the next ovulation. Ovarian activity was monitored by transrectal ultrasonography, and measurement of plasma concentrations of progesterone and estradiol. Antagonist treatment eliminated large diestrous pulses of LH. Progesterone concentrations had fallen significantly in all mares by the day after treatment and, in three of the four mares, remained low until luteolysis. However timing of luteolysis (ie., progesterone concentrations <1 ng/mL) was not affected by antagonist treatment. The preovulatory surges of estradiol and LH were significantly delayed in the treatment cycle, as was the appearance of a preovulatory follicle >30 mm. Cycle length was significantly longer during the treatment than the control cycle. These results show that treatment of diestrous mares with a GnRH antagonist attenuated progesterone secretion, indicating a role for LH in control of CL function in the mare, and delayed ovulation presumably because of lack of gonadotropic support.  相似文献   

17.
This study was designed to test if oestradiol treatment would prevent or delay luteolysis in mares. Mares (5/group) received 0, 0.1, 1.0 or 10.0 mg oestradiol-17 beta daily from the day of ovulation until the next ovulation or for a maximum of 32 days. This treatment did not prevent luteolysis which occurred 15.8, 16.8, 15.8 and 17.3 days after the previous ovulation for the mares treated with 0, 0.1, 1.0 and 10.0 mg oestradiol respectively. Although oestradiol treatment failed to alter oestrous behaviour after luteolysis, daily treatment with 10.0 mg oestradiol prevented follicular growth and inhibited ovulation.  相似文献   

18.
The aim of the present study was, to investigate the effects of oxytocin administration on Day 7 post-ovulation on progesterone secretion, pregnancy rate and embryonic growth in mares. Endogenous stimulation of oxytocin release was compared to the administration of native oxytocin or the long-acting oxytocin analogue carbetocin. At Day 7 after ovulation, mares had to undergo four treatments in a crossover design: (a) control, (b) oxytocin (10 IU i.v.), (c) carbetocin (280 microg i.m.) and (d) cervical dilation. On Day 13, all mares (8 of 8 mares) were pregnant on groups control, oxytocin and carbetocin and only 6 of 8 mares on group dilation. In one mare uterine fluid accumulation and uterine edema from Day 6 to 13 and early embryonic death by Day 11 occurred during dilation treatment. Another mare, which did not become pregnant during dilation treatment, developed uterine fluid accumulation and uterine edema from Day 10 to 14. Mean growth rates of the conceptuses did not differ among treatment groups and individual growth rates varied in a wide range from -0.1 to 0.8 cm per day. At Day 13, mean diameters of conceptuses yielded 1.4+/-0.1 cm in control group, 1.5+/-0.1 in oxytocin and carbetocin group and 1.3+/-0.2 cm in dilation group. Secretion of progesterone was not affected by treatments. Administration of oxytocin and carbetocin caused similar maximum plasma concentrations of oxytocin, but onset and duration of peaks differed. Maximum concentrations after intramuscular application of carbetocin were obtained almost 20 min later when compared to intravenous administration of oxytocin. Duration of peaks after injection of the long-acting oxytocin analogue was more than three-fold longer than after administration of native oxytocin. In conclusion, the present study showed that single administration of oxytocin or its long-acting analogue carbetocin at Day 7 after ovulation did not affect progesterone secretion, pregnancy rate and embryonic growth. Two possible scenarios concerning the effects of cervical dilation were observed: In the majority of mares, dilation of the caudal half to two-third of the cervical lumen up to a diameter of 4.5 cm had no negative consequences on progesterone secretion and pregnancy outcome. However, cervical dilation caused uterine inflammation and subsequent luteolysis in two mares and early embryonic death in one of them. Thus, manipulation of the cervix itself seems not to have negative impact on success rates of transcervical transfer of embryos in the mare.  相似文献   

19.
Pregnancy was established and maintained after embryo transfer in 3 ovariectomized mares treated with progesterone only. Four ovariectomized mares were used as recipients, and 7 transfers were performed. Progesterone in oil, 300 mg i.m. daily, was given starting 5 days before transfer of a 7-day embryo. If the mare was pregnant at 20 days, progesterone treatment was continued to 100 days of gestation. The 3 pregnant mares carried to term and delivered live foals with normal parturition, lactation and maternal behaviour. No differences were seen between pregnant and non-pregnant ovariectomized mares in jugular plasma concentrations of oestrogen, LH or FSH from day of transfer (Day 7) to Day 20. Pregnant ovariectomized mares showed a rise in LH, reflecting production of horse CG, starting at Day 36. Oestrogen values remained low until Day 50.  相似文献   

20.
Twelve American Saddlebred mares ranging in weight from 365 to 450 kg were given intramuscular injections of 2.5, 5.0 and 7.5 mg of Prostaglandin (PGF) on day 6 of diestrus a mean length of control estrus and diestrus were 6.5 ± .6, 16.9 ± 1.0 days, respectively. The 2.5, 5.0 and 7.5 mg PGF doses significantly (P < .01) shortened the length of the treatment diestrus to 10.8 ± 1.8, 9.9 ± .7 and 9.9 ± .7, respectively. The 2.5 mg dose was 90% effective in shortening the duration of diestrus while doses of 5.0 and 7.5 mg were 100% effective. No effects were noted on the mean length of estrus or diestrus following treatment. Peripheral plasma progesterone concentrations were measured by radioimmunoassay to determine the luteolytic effect of PGF. As compared to the non-treatment estrous cycles, all three treatments caused a significant (P < .01) decline in peripheral plasma progesterone concentrations 24 and 48 hr after treatment. The 2.5 mg PGF dose caused a drop in progesterone from 7.7 ± .4 on day 6 to 2.6 ± 1.0 and 2.1 ± .9 ng/ml 24 and 48 hr later, respectively. Similarly, 5.0 mg lowered the progesterone level from 7.7 ± .3 to 1.6 ± .6 and 1.5 ± .5 ng/ml, and the 7.5 mg dose lowered the progesterone level 7.5 ± .3 to 1.2 ± .2 and 1.3 ± .3 PGF. Abdominal cramps were noted in some mares after treatment. The incidence and severity of these reactions increased with the dose of PGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号