首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two cases of intestinal capillariasis have been identified at necropsy in a squirrel monkey and a capuchin monkey born and raised in captivity. The parasites are described as far as possible from the histopathological slides or intestinal contents, and their relationship to other intestinal capillarids, especially those of primates, is discussed.  相似文献   

2.
Timing the origin of New World monkeys   总被引:1,自引:0,他引:1  
The origin of New World monkeys (Infraorder Platyrrhini) has been an extensively debated issue. In this study, we analyzed mitochondrial genomes from Cebus (Platyrrhini), Homo, Hylobates, Pan, Pongo (Hominoids), Macaca, Papio (Cercopithecoids), and Tarsius (outgroup) to investigate this matter. Two distinct methodologies were employed on mitochondrial genes to estimate divergence times: the traditional likelihood ratio test performed in ML analyses of individual and concatenated gene sequences and the recent multigene Bayesian approach. Using the Cercopithecoid-Hominoid split as calibration point (25 MYA), our results show consistently that Platyrrhines split from Catarrhines at around 35 MYA. Although the main focus of the study is New World monkey origins, we have also estimated other primate divergence times: Homo-Pan at 5-7 MYA; Pongo-(Homo/Pan) at 13-16 MYA; Hylobates-(Pongo/Homo/Pan) at 15-19 MYA; and Macaca-Papio at 10-12 MYA. Our estimate for the origin of New World monkeys is in agreement with the hypothesis of a transatlantic journey from Africa to South America, as suggested by the fossil record.  相似文献   

3.
We report here the results of a comparative immunological study of the evolution of primate albumins and transferrins with special reference to the systematics of the New World monkeys. The resulting albumin and transferrin phylogenies are shown to be highly concordant with one another and with data from other laboratories on globin and fibrinopeptide sequences, DNA hybridization, and further immunological studies. We also provide evidence for a probable interdependence of albumin and transferrin rates of evolution which produces a very tight clustering of the total number of amino acid substitutions for the two molecules along lineages of equal time depth, thus providing an even better rationale for the use of these data in the formulation of molecular evolutionary clocks. We again emphasize that the analysis of immunological data is not dependent on non-molecular information or assumptions concerning rates of evolution, and that the analysis provides its own indications of interpretative problems.Specifically we find that the clade Primates must now include Tupaia and Cynocephalus (the “flying lemur”), as well as Tarsius, Anthropoidea, Lemuriformes, and Lorisiformes, and that the New World monkeys share a long period of common ancestry with the Catarrhini subsequent to the divergence of other primate lineages. The catarrhine-platyrrhine divergence is placed at around 35 million years ago, thus strengthening the case for an African derivation of the New World monkeys. The extant New World monkey lineages are then seen as sharing a long period of common ancestry subsequent to that divergence, with their radiation beginning in the early Miocene. From this radiation we see seven equally distinct lineages: (1) Aotus, (2) Callicebus, (3) Cebus, (4) Saimiri, (5) Ateles-Lagothrix-Alouatta, (6) Pithecia-Cacajao, and (7) Callimico-Callithrix-Cebuella-Saguinus-Leontideus. Within those, Ateles with Lagothrix, and Callimico with Callithrix-Cebuella form further subgroups.  相似文献   

4.
New World monkeys represent an important but often poorly understood research resource. The relatively small size and low zoonotic risk of these animals make them appealing as research subjects in a number of areas. However, historic portrayal of many of these species as difficult to manage and handle is one of the factors that has limited their use. Basic guidelines are provided on management and handling approaches for the New World monkeys most commonly used in research: marmosets, squirrel monkeys, owl monkeys, and titi monkeys. Topics include transport and acclimation to a new facility, location changes within a facility, diet changes, removal from and return to social groups, capture and restraint, handling for anesthesia, postprocedural monitoring, and staff training.  相似文献   

5.
Gestation length, neonatal and maternal body weight, and neonatal and adult brain weight data were collected for New World monkeys in an attempt to establish typical patterns of perinatal life history. This study attempts to illuminate the most accurate values from the available data, which suggest that gestation length and prenatal growth rate are broadly conserved in relation to maternal size in New World monkeys. Exceptions to the patterns evident in the data point to derivations in life history strategies. In particular, this study suggests that the extended gestation length of callitrichines is a function of minimum viable neonate size and not exclusively energy minimization associated with simultaneous lactation. Cebus is shown to undergo more postnatal brain growth relative to other New World monkeys, but not as much as previously believed. Alouatta is shown to be relatively small brained at birth as well as in adulthood. Saimiri is shown to present the most unusual package of perinatal life history traits, in which precocial neonates are gestated for a relatively long time and at a slightly faster growth rate than is typical for New World monkeys. © 1996 Wiley-Liss, Inc.  相似文献   

6.
7.
There is much debate about how humans' decision-making compares with that of other primates. One way to explore this is to compare species' performance using identical methodologies in games with strategical interactions. We presented a computerized Assurance Game, which was either functionally simultaneous or sequential, to investigate how humans, rhesus monkeys and capuchin monkeys used information in decision-making. All species coordinated via sequential play on the payoff-dominant Nash equilibrium, indicating that information about the partner's choice improved decisions. Furthermore, some humans and rhesus monkeys found the payoff-dominant Nash equilibrium in the simultaneous game, even when it was the first condition presented. Thus, Old World primates solved the task without any external cues to their partner's choice. Finally, when not explicitly prohibited, humans spontaneously used language to coordinate on the payoff-dominant Nash equilibrium, indicating an alternative mechanism for converting a simultaneous move game into a sequential move game. This phylogenetic distribution implies that no single mechanism drives coordination decisions across the primates, while humans' ability to spontaneously use language to change the structure of the game emphasizes that multiple mechanisms may be used even within the same species. These results provide insight into the evolution of decision-making strategies across the primates.  相似文献   

8.
Oxytocin is widely believed to be present and structurally identical in all placental mammals. Here, we report that multiple species of New World monkeys possess a novel form of oxytocin, [P8] oxytocin. This mutation arises from a substitution of a leucine to a proline in amino acid position 8. Further analysis of this mutation in Saimiri sciureus (squirrel monkey) indicates that [P8] oxytocin is transcribed and translated properly. This mutation is specific to oxytocin, as the peptide sequence for arginine vasopressin, a structurally related nonapeptide, is unaltered. These findings dispel the notion that all placental mammals possess a 'universal' oxytocin sequence, and highlight the need for research on the functional significance of this novel nonapeptide in New World monkeys.  相似文献   

9.
The adaptive radiation of modern New World monkeys unfolded as the major lineages diversified within different dietary-adaptive zones predicated upon a fundamentally frugivorous habit. The broad outlines of this pattern can be seen in the fossil record, beginning in the early Miocene. Cebids are obligate frugivorous predators. The smallest forms (Cebuella, Callithrix) are specialized exudativores, and the largest (cebines) are seasonally flexible omnivores, feeding particularly on insects (Saimiri) or "hard" foods, such as pith and palm nuts (Cebus), when resources are scarce. The smaller-bodied atelids (Callicebus, Aotus) may use insects or leaves opportunistically, but pitheciins (saki-uakaris) specialize on seeds as their major protein source. The larger atelines (Alouatta, Brachyteles) depend on leaves or on ripe fruit (Ateles). Locomotion, body size, and dietary adaptations are linked: claws and small body size opened the canopy-subcanopy niche to callitrichines; climbing and hanging, the fine-branch setting to the atelines; large size and strength, semiprehensile tails, and grasping thumbs, the extractive insectivory of Cebus; deliberate quadrupedalism, the energy-saving transport of folivorous Alouatta. Body size increases and decreases occurred often and in parallel within guilds and lineages. Conventional dietary categories, particularly frugivory, are inadequate for organizing the behavioral and anatomical evidence pertinent to evolutionary adaptation. Related models of morphological evolution based on feeding frequencies tend to obfuscate the selective importance of "critical functions," responses to the biomechanically challenging components of diet that may be determined by a numerically small, or seasonal, dietary fraction. For fossils, body size is an unreliable indicator of diet in the absence of detailed morphological information. More attention needs to be given to developing techniques for identifying and quantifying mechanically significant aspects of dental form, the physical properties of primate foods, their mode of access, and the cycles of availability and nutritional value.  相似文献   

10.
A comparison of the distribution of brain monoamine neurons in several New World and Old World monkeys was undertaken using the Falck-Hillarp formaldehyde histofluorescence technique. The overall organization of the monoamine neurons was very similar in all species, although subtle variations were found. Catecholamine (noradrenaline and dopamine) and indoleamine (serotonin) cell bodies corresponding to groups A1–A7, A8–A10, and B1–B9, respectively were found throughout the brainstem. A few catecholamine (dopamine) cells equivalent to groups All and A12 in the diencephalon were also observed. Noradrenaline neurons, rather than those of the dopamine and serotonin systems, tended to be less numerous in the New World monkeys. Ascending catecholamine and indoleamine fiber bundles were observed in most monkeys. It is interesting that fibers corresponding to the “ventral noradrenaline bundle” appeared to be much finer in the common marmoset and tamarin than in other species. In addition, a substantial catecholamine (noradrenaline) innervation of the diencephalon was noted in all the Old World monkeys, while a much lower overall terminal density was apparent in the New World forms.  相似文献   

11.
Sexual selection and canine dimorphism in New World monkeys   总被引:2,自引:0,他引:2  
Social and ecological factors are important in shaping sexual dimorphism in Anthropoidea, but there is also a tendency for body-size dimorphism and canine dimorphism to increase with increased body size (Rensch's rule) (Rensch: Evolution Above the Species Level. London: Methuen, 1959.) Most ecologist interpret Rensch's rule to be a consequence of social and ecological selective factors that covary with body size, but recent claims have been advanced that dimorphism is principally a consequence of selection for increased body size alone. Here we assess the effects of body size, body-size dimorphism, and social structure on canine dimorphism among platyrrhine monkeys. Platyrrhine species examined are classified into four behavioral groups reflecting the intensity of intermale competition for access to females or to limiting resources. As canine dimorphism increases, so does the level of intermale competition. Those species with monogamous and polyandrous social structures have the lowest canine dimorphism, while those with dominance rank hierarchies of males have the most canine dimorphism. Species with fission-fusion social structures and transitory intermale breeding-season competition fall between these extremes. Among platyrrhines there is a significant positive correlation between body size and canine dimorphism However, within levels of competition, no significant correlation was found between the two. Also, with increased body size, body-size dimorphism tends to increase, and this correlation holds in some cases within competition levels. In an analysis of covariance, once the level of intermale competition is controlled for, neither molar size nor molar-size dimorphism accounts for a significant part of the variance in canine dimorphism. A similar analysis using body weight as a measure of size and dimorphism yields a less clear-cut picture: body weight contributes significantly to the model when the effects of the other factors are controlled. Finally, in a model using head and body length as a measure of size and dimorphism, all factors and the interactions between them are significant. We conclude that intermale competition among platyrrhine species is the most important factor explaining variations in canine dimorphism. The significant effects of size and size dimorphism in some models may be evidence that natural (as opposed to sexual) selection also plays a role in the evolution of increased canine dimorphism.  相似文献   

12.
The draft genome sequences of several primates are available, providing insights into evolutionary and anthropological research. However, genomic resources from New World monkeys are conspicuously lacking. To date, the genomes of only two platyrrhine species, the common marmoset and the Bolivian squirrel monkey, have been fully sequenced. This is especially limiting for comparative genomics research, considering that New World monkeys are the most speciose primate group, and platyrrhine genetic diversity is comparable to that of the catarrhines (i.e. apes and Old World monkeys). Here, we present the generation and annotation of numerous sequence reads from the genomes of Spider monkey (Ateles belzebuth), Owl monkey (Aotus lemurinus) and Uakari (Cacajao calvus), representing the three platyrrhine families, Atelidae, Cebidae and Pitheciidae, respectively. These sequencing reads were developed from gDNA shotgun libraries containing over 3000 individual sequences with an average length of 726 bps. Of these sequences, 1220 contain <20% repeats, and thus are potentially highly useful phylogenetic markers for other platyrrhine species. Among them, a large number of sequencing reads were found to match unique regions within the human (2462 sequences) and the marmoset (2829 sequences) genomes. In particular, the majority of these sequencing reads are from putatively neutrally evolving intergenic regions. Thus, they are likely to be highly informative for inferring neutral evolutionary patterns and genomic evolution for other New World monkeys.  相似文献   

13.
Decision making often involves choosing between small, short-term rewards and large, long-term rewards. All animals, humans included, discount future rewards--the present value of delayed rewards is viewed as less than the value of immediate rewards. Despite its ubiquity, there exists considerable but unexplained variation between species in their capacity to wait for rewards--that is, to exert patience or self-control. Using two closely related primates--common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus)--we uncover a variable that may explain differences in how species discount future rewards. Both species faced a self-control paradigm in which individuals chose between taking an immediate small reward and waiting a variable amount of time for a large reward. Under these conditions, marmosets waited significantly longer for food than tamarins. This difference cannot be explained by life history, social behaviour or brain size. It can, however, be explained by feeding ecology: marmosets rely on gum, a food product acquired by waiting for exudate to flow from trees, whereas tamarins feed on insects, a food product requiring impulsive action. Foraging ecology, therefore, may provide a selective pressure for the evolution of self-control.  相似文献   

14.
15.
The general notion of an “RNA World” is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA and genetically encoded proteins were not involved as catalysts. There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life. However, arguments regarding whether life on Earth began with RNA are more tenuous. It might be imagined that all of the components of RNA were available in some prebiotic pool, and that these components assembled into replicating, evolving polynucleotides without the prior existence of any evolved macromolecules. A thorough consideration of this “RNA-first” view of the origin of life must reconcile concerns regarding the intractable mixtures that are obtained in experiments designed to simulate the chemistry of the primitive Earth. Perhaps these concerns will eventually be resolved, and recent experimental findings provide some reason for optimism. However, the problem of the origin of the RNA World is far from being solved, and it is fruitful to consider the alternative possibility that RNA was preceded by some other replicating, evolving molecule, just as DNA and proteins were preceded by RNA.  相似文献   

16.
Infections that cause the Gombak and Smithsonian strains of Plasmodium cynomolgi were induced in Macaca mulatta, Aotus lemurinus griseimembra, Aotus nancymai, and Saimiri boliviensis monkeys. Transmission of the Gombak strain to Aotus spp. monkeys was obtained by the injection of sporozoites dissected from the salivary glands of experimentally infected Anopheles dirus and by the bites of infected An. dirus and Anopheles farauti mosquitoes. Two S. boliviensis monkeys were infected via the injection of sporozoites dissected from An. dirus. Prepatent periods in New World monkeys ranged from 14 to 44 days, with a median of 18 days. The Smithsonian strain was transmitted via sporozoites to 1 A. lemurinus griseimembra and 9 A. nancymai monkeys. Prepatent periods ranged from 12 to 31 days.  相似文献   

17.
Traits that undergo massive natural selection pressure, with multiple events of positive selection, are hard to find. Social behaviour, in social animals, is crucial for survival, and genetic networks involved in behaviour, such as those of serotonin (5‐HT) and other neurotransmitters, must be the target of natural selection. Here, we used molecular analyses to search for signals of positive selection in the 5‐HT system and found such signals in the M3‐M4 intracellular domain of the 5‐HT3A serotonin receptor subunit (HTR3A) in primates. We detected four amino acid sites with signs of putatively positive selection (398, 403, 432 and 416); the first three showed indications of being selected in New World monkeys (NWM, Platyrrhini), specifically in the Callitrichinae branch. Additionally, we searched for associations of these amino acid variants with social behavioural traits (i.e. sex‐biased dispersal, dominance and social monogamy) using classical and Bayesian methods, and found statistically significant associations for unbiased sex dispersal (398L and 416S), unbiased sex dominance (416S) and social monogamy (416S), as well as significant positive correlation between female dispersal and 403G. Furthermore, we found putatively functional protein motifs determined by three selected sites, of which we highlight a ligand motif to GSK3 in the 416S variant, appearing only in Platyrrhini. 5‐HT, 5‐HT3A receptor and GSK3 are part of a network that participates in neurodevelopment and regulates behaviour, among other functions. We suggest that these genetic variations, together with those found in other neurotransmitter systems, must contribute to adaptive behaviours and consequently to fitness in NWMs.  相似文献   

18.
Attempts are being made to adapt Old World monkey malarial parasites to New World monkeys for vaccine and molecular studies. Several of these (Plasmodium cynomolgi Berok, Plasmodium fragile, and Plasmodium knowlesi) grow readily but have failed to produce infective gametocytes. Plasmodium gonderi and Plasmodium fieldi develop in the liver after sporozoite inoculation but have failed to establish infection in the erythrocyte. Anopheles dirus mosquitoes infected with Plasmodium inui shortti by feeding on infected macaques transmitted the infection to Saimiri boliviensis monkeys. Infective gametocytes were produced, and sporozoite transmission from Saimiri to Saimiri monkey was obtained. Exoerythrocytic stages have also been observed in the liver tissue of Saimiri monkeys. The availability of the complete transmission cycle provides an additional resource for immunologic and vaccine studies.  相似文献   

19.
20.
Most New World monkeys have an X-chromosome opsin gene polymorphism that produces a variety of different colour vision phenotypes. Howler monkeys (Alouatta), one of the four genera in the family Atelidae lack this polymorphism. Instead, they have acquired uniform trichromatic colour vision similar to that of Old World monkeys, apes and people through opsin gene duplication. In order to determine whether closely related monkeys share this arrangement, spectral sensitivity functions that allow inferences about cone pigments were measured for 56 monkeys from two other Atelid genera, spider monkeys (Ateles) and woolly monkeys (Lagothrix). Unlike howler monkeys, both spider and woolly monkeys are polymorphic for their middle- and long-wavelength cone photopigments. However, they also differ from other polymorphic New World monkeys in having two rather than three possible types of middle- and long-wavelength cone pigments. This feature directly influences the relative numbers of dichromatic and trichromatic monkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号