首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crop improvement and the dissection of complex genetic traits require germplasm diversity. Although this necessary phenotypic variability exists in diverse maize, most research is conducted using a small subset of inbred lines. An association population of 302 lines is now available--a valuable research tool that captures a large proportion of the alleles in cultivated maize. Provided that appropriate statistical models correcting for population structure are included, this tool can be used in association analyses to provide high-resolution evaluation of multiple alleles. This study describes the population structure of the 302 lines, and investigates the relationship between population structure and various measures of phenotypic and breeding value. On average, our estimates of population structure account for 9.3% of phenotypic variation, roughly equivalent to a major quantitative trait locus (QTL), with a high of 35%. Inclusion of population structure in association models is critical to meaningful analyses. This new association population has the potential to identify QTL with small effects, which will aid in dissecting complex traits and in planning future projects to exploit the rich diversity present in maize.  相似文献   

2.
Blood clotting factor ten (X) levels measured in 149 people in six pedigrees were found to fit a mixture of normal distributions. No environmental effect could be identified to account for the wide separation in the means of these distributions. Pedigree analysis reveals that the data are compatible with an autosomal, one locus, two allele genetic model affecting factor X activity. Goodness of fit tests suggest that the allele for low levels of factor X is dominant, though on the basis of likelihood tests, mean heterozygote levels are different from mean homozygote levels. A similar bimodal distribution for factor X levels observed previously in a separate sample of 207 young men, indicated that the proposed dominant allele has an estimated population gene frequency of .53. The earlier estimate is remarkably similar to that obtained with the currently ascertained pedigrees. The postulated major gene accounts for more than half of the variation in factor X levels.  相似文献   

3.
Deficits in prepulse inhibition (PPI) are a biological marker for schizophrenia. To unravel the mechanisms that control PPI, we performed quantitative trait loci (QTL) analysis on 1,010 F2 mice derived by crossing C57BL/6 (B6) animals that show high PPI with C3H/He (C3) animals that show low PPI. We detected six major loci for PPI, six for the acoustic startle response, and four for latency to response peak, some of which were sex-dependent. A promising candidate on the Chromosome 10-QTL was Fabp7 (fatty acid binding protein 7, brain), a gene with functional links to the N-methyl-D-aspartic acid (NMDA) receptor and expression in astrocytes. Fabp7-deficient mice showed decreased PPI and a shortened startle response latency, typical of the QTL's proposed effects. A quantitative complementation test supported Fabp7 as a potential PPI-QTL gene, particularly in male mice. Disruption of Fabp7 attenuated neurogenesis in vivo. Human FABP7 showed altered expression in schizophrenic brains and genetic association with schizophrenia, which were both evident in males when samples were divided by sex. These results suggest that FABP7 plays a novel and crucial role, linking the NMDA, neurodevelopmental, and glial theories of schizophrenia pathology and the PPI endophenotype, with larger or overt effects in males. We also discuss the results from the perspective of fetal programming.  相似文献   

4.
Interval-specific congenic strains (ISCS) allow fine mapping of a quantitative trait locus (QTL), narrowing its confidence interval by an order of magnitude or more. In earlier work, we mapped four QTL specifying differential ethanol sensitivity, assessed by loss of righting reflex because of ethanol (LORE), in the inbred long-sleep (ILS) and inbred short-sleep (ISS) strains, accounting for approximately 50% of the genetic variance for this trait. Subsequently, we generated reciprocal congenic strains in which each full QTL interval from ILS was bred onto the ISS background and vice versa. An earlier paper reported construction and results of the ISCS on the ISS background; here, we describe this process and report results on the ILS background. We developed multiple ISCS for each Lore QTL in which the QTL interval was broken into a number of smaller intervals. For each of the four QTL regions (chromosomes 1, 2, 11 and 15), we were successful in reducing the intervals significantly. Multiple, positive strains were overlapped to generate a single, reduced interval. Subsequently, this reduced region was overlaid on previous reductions from the ISS background congenics, resulting in substantial reductions in all QTL regions by approximately 75% from the initial mapping study. Genes with sequence or expression polymorphisms in the reduced intervals are potential candidates; evidence for these is presented. Genetic background effects can be important in detection of single QTL; combining this information with the generation of congenics on both backgrounds, as described here, is a powerful approach for fine mapping QTL.  相似文献   

5.
6.
Potato is the third most important staple food crop in terms of consumption, yet it is relatively susceptible to yield loss because of drought. As a first step towards improving drought tolerance in this crop, we set out to identify the genetic basis for drought tolerance in a diploid potato mapping population. Experiments were carried out under greenhouse conditions in two successive years by recording four physiological, seven growth and three yield parameters under stress and recovery treatments. Genotypes showed significant variation for drought and recovery responses. The traits measured had low to moderately high heritabilities (ranging from 22 to 74?%). A total of 47 quantitative trait loci (QTL) were identified, of which 28 were drought-specific, 17 under recovery treatment and two under well-watered conditions. The majority of these growth and yield QTL co-localized with a QTL for maturity on chromosome 5. Four QTL for ??13C, three for chlorophyll content and one for chlorophyll fluorescence (F v/F m) were found to co-localize with yield and other growth trait QTL identified on other chromosomes. Several multi-year and multi-treatment QTL were detected and QTL?×?environment interaction was found for ??13C. To our knowledge, this is the first comprehensive QTL study on water deficit and recovery potential in potato.  相似文献   

7.

Background

For decades, research efforts have tried to uncover the underlying genetic basis of human susceptibility to a variety of diseases. Linkage studies have resulted in highly replicated findings and helped identify quantitative trait loci (QTL) for many complex traits; however identification of specific alleles accounting for linkage remains elusive. The purpose of this study was to determine whether with a sufficient number of variants a linkage signal can be fully explained.

Method

We used comprehensive fine-mapping using a dense set of single nucleotide polymorphisms (SNPs) across the entire quantitative trait locus (QTL) on human chromosome 7q36 linked to plasma triglyceride levels. Analyses included measured genotype and combined linkage association analyses.

Results

Screening this linkage region, we found an over representation of nominally significant associations in five genes (MLL3, DPP6, PAXIP1, HTR5A, INSIG1). However, no single genetic variant was sufficient to account for the linkage. On the other hand, multiple variants capturing the variation in these five genes did account for the linkage at this locus. Permutation analyses suggested that this reduction in LOD score was unlikely to have occurred by chance (p = 0.008).

Discussion

With recent findings, it has become clear that most complex traits are influenced by a large number of genetic variants each contributing only a small percentage to the overall phenotype. We found that with a sufficient number of variants, the linkage can be fully explained. The results from this analysis suggest that perhaps the failure to identify causal variants for linkage peaks may be due to multiple variants under the linkage peak with small individual effect, rather than a single variant of large effect.  相似文献   

8.
Linkage between a marker locus and a quantitative trait of sibs   总被引:3,自引:2,他引:3       下载免费PDF全文
Several variations of a method for detecting linkage between a marker locus and a quantitative trait in full sib families are presented along with computational details. All variations are based on contrasts within qualifying families of three or more sibs. The empirical powers of the various test statistics, evaluated by simulation, were very similar, and also similar to that of Smith. These single-generation tests are likely to be successful only for many families and relatively tight linkage.  相似文献   

9.
Localization of a quantitative trait locus via a Bayesian approach   总被引:1,自引:0,他引:1  
A Bayesian approach to the direct mapping of a quantitative trait locus (QTL), fully utilizing information from multiple linked gene markers, is presented in this paper. The joint posterior distribution (a mixture distribution modeling the linkage between a biallelic QTL and N gene markers) is computationally challenging and invites exploration via Markov chain Monte Carlo methods. The parameter's complete marginal posterior densities are obtained, allowing a diverse range of inferences. Parameters estimated include the QTL genotype probabilities for the sires and the offspring, the allele frequencies for the QTL, and the position and additive and dominance effects of the QTL. The methodology is applied through simulation to a half-sib design to form an outbred pedigree structure where there is an entire class of missing information. The capacity of the technique to accurately estimate parameters is examined for a range of scenarios.  相似文献   

10.
Sunflower (Helianthus annuus L.) contains tocopherol, a non-enzymatic antioxidant known as lipid-soluble vitamin E, and phytosterol, with interesting properties, which can result in decreased risk of chronic diseases in humans and with several beneficial effects in plants. The genetic control of tocopherol and phytosterol content in a population of 123 recombinant inbred lines of sunflower was studied through quantitative trait loci (QTL) analysis using 190 simple sequence repeats and a gene-based linkage map. Seven experiments were conducted in different environments in France and Iran during 2007 and 2008. Each experiment consisted of three replications. Means over all environments were used for QTL mapping. Five QTL for total tocopherol content on linkage groups 1, 8, 10 and 14 accounted for 45% of phenotypic variation, whereas four QTL for total phytosterol content on linkage groups 1, 2, 16 and 17 explained 27% of the phenotypic variation. GST, PAT2, SFH3 and POD genes showed co-localization with QTL for total phytosterol content. SMT2 is also mapped on linkage group 17 near the QTL of total phytosterol content. Four candidate genes, VTE4, HPPD, GST and Droug1, exhibited co-localization with QTL for total tocopherol content. The candidate genes associated with tocopherol and phytosterol, especially HPPD, VTE4 and SMT2, could be used for alternation of the tocopherol and phytosterol content of sunflower seeds through the development of functional markers.  相似文献   

11.
Nonalchoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction and is associated with metabolic diseases, including obesity, insulin resistance, and type 2 diabetes. We mapped a quantitative trait locus (QTL) for NAFLD to chromosome 17 in a cross between C57BL/6 (B6) and BTBR mouse strains made genetically obese with the Lep(ob/ob) mutation. We identified Tsc2 as a gene underlying the chromosome 17 NAFLD QTL. Tsc2 functions as an inhibitor of mammalian target of rapamycin, which is involved in many physiological processes, including cell growth, proliferation, and metabolism. We found that Tsc2(+/-) mice have increased lipogenic gene expression in the liver in an insulin-dependent manner. The coding single nucleotide polymorphism between the B6 and BTBR strains leads to a change in the ability to inhibit the expression of lipogenic genes and de novo lipogenesis in AML12 cells and to promote the proliferation of Ins1 cells. This difference is due to a different affinity of binding to Tsc1, which affects the stability of Tsc2.  相似文献   

12.
Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.  相似文献   

13.
Summary Selective genotyping is the term used when the determination of linkage between marker loci and quantitative trait loci (QTL) affecting some particular trait is carried out by genotyping only individuals from the high and low phenotypic tails of the entire sample population. Selective genotyping can markedly decrease the number of individuals genotyped for a given power at the expense of an increase in the number of individuals phenotyped. The optimum proportion of individuals genotyped from the point of view of minimizing costs for a given experimental power depends strongly on the cost of completely genotyping an individual for all of the markers included in the experiment (including the costs of obtaining a DNA sample) relative to the cost of rearing and trait evaluation of an individual. However, in single trait studies, it will almost never be useful to genotype more than the upper and lower 25% of a population. It is shown that the observed difference in quantitative trait values associated with alternative marker genotypes in the selected population can be much greater than the actual gene effect at the quantitative trait locus when the entire population is considered. An expression and a figure is provided for converting observed differences under selective genotyping to actual gene effects.  相似文献   

14.
Summary The 3 portion of the coagulation factor VII gene, containing the activation and serine protease domains, was investigated in four subjects with factor VII deficiency by temperature gradient gel electrophoresis and sequencing of polymerase chain reaction (PCR) products. Molecules displaying an altered melting behaviour were detected in three subjects, and direct sequencing showed two mutations. A G-to-T transversion causing a missense mutation, Cys-310 to Phe, suppresses a disulphide bond conserved in the catalytic domain of all serine proteases. This mutation, which in the homozygous form causes a severe reduction in protease activity (4%), was found in two patients from different Italian regions. A G-to-A transition, which gives rise to a missense mutation, Arg-304 to Gln, and is associated with the factor VII Padua variant, was found in the heterozygous form in a subject also affected by von Willebrand disease. Two polymorphic alleles, which differ in one repeat monomer element, were precisely mapped in a region spanning the exon-intron 7 border of the factor VII gene and studied in families with factor VII or X deficiency.  相似文献   

15.
Chronic morphine exposure results in physical dependence, manifested by physical symptoms during naloxone-precipitated withdrawal. Jumping frequency is widely considered the most sensitive and reliable index of withdrawal intensity in mice. Inbred mouse strains surveyed for naloxone-precipitated withdrawal display large and significant strain differences in jumping frequency, including an approximately tenfold difference between C57BL/6 and 129P3 mice. In the present study, (B6 × 129)F2 hybrid mice were given daily morphine injections for four days using an escalating dosing schedule, and naloxone-precipitated withdrawal on day 5 was measured. A full-genome scan for linkage to phenotypic data was performed using polymorphic microsatellite markers. Significant linkage was observed between withdrawal jumping frequencies and a 28 cM-wide region of Chromosome 1 (32–60 cM; peak at 51 cM), accounting for 20% of the overall phenotypic variance. Two other suggestive QTLs were found, on Chromosomes 5 and 10, and an additive model fitting all three loci accounted for 43% of the total variance. F2 mice were also assessed for changes in morphine analgesic potency using the tail-withdrawal test in dose–response studies on days 1 and 4. No linkage was observed between Chromosomes 1, 5, and 10 and morphine analgesic tolerance, suggestive of genetic dissociation of naloxone-precipitated withdrawal from morphine and chronic morphine intake per se. The significant quantitative trait locus for naloxone-precipitated withdrawal severity in morphine-dependent mice, which we name Depmq1, may prove to be of considerable heuristic value once the underlying gene or genes are identified.  相似文献   

16.
The t-haplotype, a variant form of the t-complex region on mouse chromosome 17, acts as selfish genetic element and is transmitted at high frequencies (> 95%) from heterozygous (t/+) males to their offspring. This phenotype is termed transmission ratio distortion (TRD) and is caused by the interaction of the t-complex responder (Tcr) with several quantitative trait loci (QTL), the t-complex distorters (Tcd1 to Tcd4), all located within the t-haplotype region. Current data suggest that the distorters collectively impair motility of all sperm derived from t/+ males; t-sperm is rescued by the responder, whereas (+)-sperm remains partially dysfunctional. Recently we have identified two distorters as regulators of RHO small G proteins. Here we show that the nucleoside diphosphate kinase gene Nme3 acts as a QTL on TRD. Reduction of the Nme3 dosage by gene targeting of the wild-type allele enhanced the transmission rate of the t-haplotype and phenocopied distorter function. Genetic and biochemical analysis showed that the t-allele of Nme3 harbors a mutation (P89S) that compromises enzymatic activity of the protein and genetically acts as a hypomorph. Transgenic overexpression of the Nme3 t-allele reduced t-haplotype transmission, proving it to be a distorter. We propose that the NME3 protein interacts with RHO signaling cascades to impair sperm motility through hyperactivation of SMOK, the wild-type form of the responder. This deleterious effect of the distorters is counter-balanced by the responder, SMOK(Tcr), a dominant-negative protein kinase exclusively expressed in t-sperm, thus permitting selfish behaviour and preferential transmission of the t-haplotype. In addition, the previously reported association of NME family members with RHO signaling in somatic cell motility and metastasis, in conjunction with our data involving RHO signaling in sperm motility, suggests a functional conservation between mechanisms for motility control in somatic cells and spermatozoa.  相似文献   

17.
Summary A new method is described to obtain maximum likelihood estimates of recombination frequencies between quantitative trait loci (QTL) and marker gene loci; it is based on Fisher's method of scoring and numerical differentiation. The method is applied to data from chromosome-doubled monoploid lines of barley originating from the F1 generation of a cross between two well-adapted barley varieties. The lines segregated for marker gene loci ddt (DDT resistance) and s (short rachilla hairs) on chromosome 7. The quantitative trait of single-kernel weight was found statistically significantly associated with locus s, but not with locus ddt. The association is ascribed to a QTL designated Kw1. It could not be ascribed to pleiotropism at locus s since the recombination frequency between s and Kw1 (0.26±0.09) differed significantly from zero. The recombination frequencies between Kw1 and ddt and between ddt and s were 0.42±0.07 and 0.31±0.03, respectively, suggesting the locus order ddt, s, Kw1. The segregation ratio for alleles in locus Kw1 was estimated to be 4357, which is not significantly different from a 11 ratio. Means and standard deviations of single-kernel weight for lines with either of the two Kw1 alleles were estimated; the Kw1 locus accounted for 25% of the variance of the single kernel weight.  相似文献   

18.
Rat Chromosome 10 (RNO10) harbors Cia5, a non-MHC quantitative trait locus (QTL) that regulates the severity of type II collagen-induced arthritis (CIA) in DAxF344 and DAxBN F2 rats. CIA is an animal model with many features that resemble rheumatoid arthritis. To facilitate analysis of Cia5 independently of the other CIA regulatory loci on other chromosomes, DA recombinant QTL speed congenic rats, DA.F344(Cia5), were generated. These QTL congenic rats have a large chromosomal segment containing Cia5 (interval size < or =80.1 cM) from CIA-resistant F344 rats introgressed into their genome. Phenotypic analyses of these rats for susceptibility and severity of CIA confirmed that Cia5 is an important disease-modifying locus. CIA severity was significantly lower in the Cia5 congenic rats than in DA controls. We also generated DA Cia5 speed sub-congenic rats, DA.F344(Cia5a), which had a smaller segment of the F344 genome, Cia5a, comprising only the distal q-telomeric end (interval size < or = 22.5 cM) of Cia5, introgressed into their genome. DA.F344(Cia5a) sub-congenic rats also exhibited reduced CIA disease severity compared with the parental DA rats. The regulatory effects in both congenic strains were sex influenced. The disease-ameliorating effect of the larger fragment, Cia5, was greater in males than in females, but the effect of the smaller fragment, Cia5a, was greater in females. We also present an improved genetic linkage map covering the Cia5/Cia5a region, which we have integrated with two rat radiation hybrid maps. Comparative homology analysis of this genomic region with mouse and human chromosomes was also undertaken. Regulatory loci for multiple autoimmune/inflammatory diseases in rats (RNO10), mice (MMU11), and humans (HSA17 and HSA5q23-q31) map to chromosomal segments homologous to Cia5 and Cia5a.  相似文献   

19.
Yield losses caused by lodging in cereals can be partially controlled by reducing plant height. A progeny of recombinant inbred lines from a cross of two Japanese barley varieties was used to study the inheritance of culm and culm internode lengths. An unexpected QTL for reduced culm length (qCUL), which affected mainly the length of the third and fourth culm internodes, was contributed by ‘Kanto Nakate Gold’. This QTL was also associated with reduced lodging in two experiments. A near-isogenic line (culm length 62.9–73.4 cm) in an ‘Azumamugi’ background, carrying a chromosome segment containing the qCUL allele from Kanto Nakate Gold, was significantly shorter than its recurrent parent (82.9–89.4 cm). The F2 generation from the next backcross segregated for plant height in a Mendelian monogenic ratio. The qCUL locus was shown to be tightly linked (1.2 cM) with the codominant STS marker ABG608. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Positional cloning of the quantitative trait locus (QTL) still encounters numerous difficulties, which explains why thousands of QTL have been mapped, while only a few have been identified at the molecular level. Here, we focus on a specific mapping tool that exists in plant and animal model species: interspecific recombinant congenic strains (IRCSs) or interspecific nearly isogenic lines (NILs). Such panels exhibit a much higher sequence diversity than intraspecific sets, thus enhancing the contrasts between phenotypes. In animals, it allows statistical significance to be reached even when using a limited number of individuals. Therefore, we argue that interspecific resources may constitute a major genetic tool for positional cloning and for understanding some bases of speciation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号