共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of TNF-alpha-mediated chondrocyte apoptosis in human articular cartilage was investigated. First passage OA chondrocytes were treated with actinomycin D or MG132 in combination with TNF-alpha to facilitate cell death. The patterns of apoptosis-related proteins, NF-kappaB activation, and IkappaB degradation were analyzed. Cell death was increased by 0.2 microg/ml of actinomycin D or 20 microM MG132 in combination with TNF-alpha. Apoptosis potentiated by MG132 was more effectively inhibited by caspase inhibitors than that by actinomycin D. MG132 or actinomycin D both led to a significant increase in p53, but the expressions of the p53 response proteins increased only in MG132 treated chondrocytes. TNF-alpha induced chondrocyte IkappaB phosphorylation was unaffected by either MG132 or actinomycin D. MG132, but not actinomycin D, inhibited the chondrocyte IkappaB degradation induced by TNF-alpha and NF-kappaB activation. Our results suggest that MG132 and actinomycin D exert different influences upon TNF-alpha-mediated chondrocyte apoptotic signaling. 相似文献
2.
We have previously reported that inhibition of protein kinase C induces differentiation of neuroblastoma cells in culture. It is shown now that actinomycin D, a well known inhibitor of DNA synthesis, reduces selectively the content of protein kinase C and induces neuritogenesis in Neuro 2a cells in culture. 相似文献
3.
Tumor necrosis factor alpha (TNFalpha), a pleiotropic cytokine, activates both apoptotic and pro-survival signals depending on the cell model. Using ECV304 cells, which can be made TNFalpha-sensitive by cycloheximide (CHX) co-treatment, we evaluated the potential roles of ceramide and phospholipase D (PLD) in TNFalpha-induced apoptosis. TNFalpha/CHX induced a robust increase in ceramide levels after 16 h of treatment when cell death was maximal. PLD activity was increased at early time point (1h) whereas both PLD activity and PLD1 protein were strongly decreased after 24h. TNFalpha/CHX-induced cell death was significantly lowered by exogenous bacterial PLD and phoshatidic acid, and in cells overexpressing PLD1. Conversely, cells depleted in PLD proteins by small interference RNA (siRNA) treatment exhibited higher susceptibility to apoptosis. These results show that PLD exerts a protective role against TNFalpha-induced cell death. 相似文献
4.
MAPK pathway mediates the protective effects of onychin on oxidative stress-induced apoptosis in ECV304 endothelial cells 总被引:6,自引:0,他引:6
Our recent studies have shown that onychin could protect rabbit aortic rings from lysophosphatidylcholine-induced injury by preserving endothelium-dependent relaxation and alleviating acute endothelial damage mediated by oxidative stress. However, the effect of onychin on apoptosis of endothelial cells induced by oxidative stress was not evaluated. In the present study, we investigated the effect of onychin on Hydrogen Peroxide (H2O2) induced apoptosis of ECV304 endothelial cells. Cultured human umbilical vein endothelial cell line (ECV304) was pretreated with vehicle (DMSO), genistein, or different concentrations of onychin (0.1, 0.3, 1, 3, and 10 micromol/L) for 30 minutes and then exposed to 1 mmol/L H2O2 for 24 hours. Cell apoptosis was determined by TUNEL and flow cytometric analysis. Meanwhile, Western-blot was used to measure the expression of phospho-ERK1/2, phospho-p38 and caspase-3. Our data showed that onychin treatment exhibited a protective effect on ECV304 endothelial cells from H2O2-induced apoptosis in a concentration-dependent manner. Moreover, onychin attenuated H2O2-induced phosphorylation of p38MAPK and increased H2O2-induced phosphorylation of ERK1/2. Furthermore, onychin decreased the activation of caspase-3. The opposing effects of onychin on phosphorylation levels of p38MAPK and ERK1/2, and its caspase-3 inhibition might play a role in the beneficial effect of onychin on endothelial injury. 相似文献
5.
Enhancing apoptosis to remove abnormal cells has potential in reversing cancerous processes. Caspase-3 activation generally accompanies apoptosis and its substrates include enzymes responsible for DNA fragmentation and isozymes of protein kinase C (PKC). Recent data, however, question its obligatory role in apoptosis. We have examined whether modulation of PKC activity induces apoptosis in COLO 205 cells and the role of caspase-3. Proliferation ([3H]thymidine) and apoptosis (DNA fragmentation and FACS) of COLO 205 cells were measured in response to PKC activation and inhibition. Caspase-3 activity was assayed and the effects of its inhibition with Ac-DEVD-cmk, and the effect of other protease inhibitors, on apoptosis were determined. PKC activation and inhibition both reduced DNA synthesis and induced DNA fragmentation. As PKC inhibitors induced DNA fragmentation more rapidly than PKC activators and failed to block activator effects, we conclude that it is PKC down-regulation (i.e., inhibition) after activator exposure that mediates apoptosis. Increases in caspase-3 activity occurred during apoptosis but apoptosis was not blocked by caspase inhibition. By contrast, the cysteine protease inhibitor, E-64d, blocked apoptosis. Cysteine proteases not of the caspase family may either act more closely to the apoptotic process than caspases or lie on an alternative, more active pathway. 相似文献
6.
Rykx A De Kimpe L Mikhalap S Vantus T Seufferlein T Vandenheede JR Van Lint J 《FEBS letters》2003,546(1):81-86
The protein kinase D family of enzymes consists of three isoforms: PKD1/PKCmu PKD2 and PKD3/PKCnu. They all share a similar architecture with regulatory sub-domains that play specific roles in the activation, translocation and function of the enzymes. The PKD enzymes have recently been implicated in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, metastasis, immune responses, apoptosis and cell proliferation. 相似文献
7.
Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis 总被引:1,自引:0,他引:1
Tamagiku Y Sonoda Y Kunisawa M Ichikawa D Murakami Y Aizu-Yokota E Kasahara T 《Biochemical and biophysical research communications》2004,323(2):445-452
We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells. 相似文献
8.
Protein C‐terminal enzymatic labeling identifies novel caspase cleavages during the apoptosis of multiple myeloma cells induced by kinase inhibition 下载免费PDF全文
Wenwen Duan Suping Chen Yang Zhang Dan Li Rong Wang Shi Chen Junbei Li Xiaoyan Qiu Guoqiang Xu 《Proteomics》2016,16(1):60-69
Caspase activation and proteolytic cleavages are the major events in the early stage of apoptosis. Identification of protein substrates cleaved by caspases will reveal the occurrence of the early events in the apoptotic process and may provide potential drug targets for cancer therapy. Although several N‐terminal MS‐based proteomic approaches have been developed to identify proteolytic cleavages, these methods have their inherent drawbacks. Here we apply a previously developed proteomic approach, protein C‐terminal enzymatic labeling (ProC‐TEL), to identify caspase cleavage events occurring in the early stage of the apoptosis of a myeloma cell line induced by kinase inhibition. Both previously identified and novel caspase cleavage sites are detected and the reduction of the expression level of several proteins is confirmed biochemically upon kinase inhibition although the current ProC‐TEL procedure is not fully optimized to provide peptide identifications comparable to N‐terminal labeling approaches. The identified cleaved proteins form a complex interaction network with central hubs determining morphological changes during the apoptosis. Sequence analyses show that some ProC‐TEL identified caspase cleavage events are unidentifiable when traditional N‐terminomic approaches are utilized. This work demonstrates that ProC‐TEL is a complementary approach to the N‐terminomics for the identification of proteolytic cleavage events such as caspase cleavages in signaling pathways. 相似文献
9.
Kader Thiam Estelle Loing Frédéric Gilles Claudie Verwaerde Brigitte Quatannens Claude Auriault Hélène Gras-Masse 《Letters in Peptide Science》1997,4(4-6):397-402
Intracellular enzymes or receptors are interesting targets for thepharmacomodulation of cellular metabolism. We have previously shown thatmodification of relatively long peptides by a palmitoyl-lysine residue couldfacilitate their delivery into the cytoplasm of living cells. Severalpeptides containing pseudosubstrate sequences of protein kinase C (PKC) havebeen evaluated for their ability to modulate phosphorylation of modelsubstrate, neuronal morphology or tumor necrosis factor secretion. In thiswork we have evaluated the effect of palmitoyl-modified PKC-pseudosubstratepeptides on induction of apoptosis. We have established that these peptidesare able to induce apoptosis in different human cell types (primaryfibroblasts, T- and B-lymphocyte cell lines) as assessed by (terminal deoxynucleotidyl transferase dUTP nick-end labelling) and DNAfragmentation. In contrast, control peptides (non-lipidicPKC-pseudosubstrate peptides and irrelevant lipopeptides) had no or littleeffect on programmed cell death. This work highlights the pharmacologicalinterest of lipopeptides and argues in favor of the potential role of PKC(s)in the cell death machinery. 相似文献
10.
Kader Thiam Estelle Loing Frédéric Gilles Claudie Verwaerde Brigitte Quatannens Claude Auriault Hélène Gras-Masse 《International journal of peptide research and therapeutics》1997,4(4-6):397-402
Summary Intracellular enzymes or receptors are interesting targets for the pharmacomodulation of cellular metabolism. We have previously
shown that modification of relatively long peptides by a palmitoyl-lysine residue could facilitate their delivery into the
cytoplasm of living cells. Several peptides containing pseudosubstrate sequences of protein kinase C (PKC) have been evaluated
for their ability to modulate phosphorylation of model substrate, neuronal morphology or tumor necrosis factor secretion.
In this work we have evaluated the effect of palmitoyl-modified PKC-pseudosubstrate peptides on induction of apoptosis. We
have established that these peptides are able to induce apoptosis in different human cell types (primary fibroblasts, T- and
B-lymphocyte cell lines) as assessed by (terminal deoxynucleotidyl transferase dUTP nick-end labelling) and DNA fragmentation.
In contrast, control peptides (non-lipidic PKC-pseudosubstrate peptides and irrelevant lipopeptides) had no or little effect
on programmed cell death. This work highlights the pharmacological interest of lipopeptides and argues in favor of the potential
role of PKC(s) in the cell death machinery.
K. Thiam and E. Loing have contributed equally to this work. 相似文献
11.
The protein kinase D (PKD) family consists of three serine-threonine kinases involved in cellular proliferation, motility, and apoptosis. We previously reported that human toll-like receptor 5 (TLR5) contains a consensus PKD phosphorylation site. Flagellin stimulation of cells activated PKD1, and inhibition of PKD1 reduced flagellin-induced interleukin-8 (IL-8) production in epithelial cells. In the current work, we examined PKD1 and PKD2 involvement downstream of TLR5, TLR4 and TLR2. We found that inhibition of either kinase with shRNA reduced IL-8 and CCL20 release due to TLR4 and TLR2 agonists to a similar extent as previously reported for TLR5. PKD1 and PKD2 inhibition reduced NF-κB activity but not MAPK activation. These results demonstrate that both PKD1 and PKD2 are required for inflammatory responses following TLR2, TLR4, or TLR5 activation, although PKD1 is more strongly involved. These kinases likely act downstream of the TLRs themselves to facilitate NF-κB activation but not MAP kinase phosphorylation. 相似文献
12.
13.
蛋白激酶B及其在磷脂酰肌醇3-激酶介导的信号转导中的作用 总被引:6,自引:0,他引:6
蛋白激酶B(PKB)是原癌基因c-akt的表达产物,它参与由生长因子激活的经磷脂磷肌醇3-激酶(PI3K)介导的信号转导过程。与许多蛋白激酶相似,PKB分子具有一特殊的AH/PH结构域(AH/PHdomain),后者能介导信号分子间的相互作用。PKB是PI3K直接的靶蛋白。PI3K产生的脂类第二信使PI-3,4,P2和PI-3,4,5-P3等均能与PKB和磷酸肌醇依赖性蛋白激酶(PDK)的AH/P 相似文献
14.
Nitric oxide (NO) regulates differentiation, survival, and cyclooxygenase (COX)-2 expression in articular chondrocytes. NO-induced apoptosis and dedifferentiation are mediated by p38 kinase activity and p38 kinase-independent and -dependent inhibition of protein kinase C (PKC)alpha and zeta. Because p38 kinase also activates NF-kappa B, we investigated the functional relationship between PKC and NF-kappa B signaling and the role of NF-kappa B in apoptosis, dedifferentiation, and COX-2 expression. We found that NO-stimulated NF-kappa B activation was inhibited by ectopic PKC alpha and zeta expression, whereas NO-stimulated inhibition of PKC alpha and zeta activity was not affected by NF-kappa B inhibition. Inhibition of NO-induced NF-kappa B activity did not affect inhibition of type II collagen expression but did abrogate COX-2 expression and apoptosis. Taken together, our results indicate that NO-induced inhibition of PKC alpha and zeta activity is required for the NF-kappa B activity that regulates apoptosis and COX-2 expression but not dedifferentiation in articular chondrocytes. 相似文献
15.
Garnett TO Filippova M Duerksen-Hughes PJ 《Apoptosis : an international journal on programmed cell death》2007,12(7):1299-1315
TRAIL induces apoptosis in many malignant cell types. In this study, we used the human papilloma virus (HPV) 16 E6 protein
as a molecular tool to probe the TRAIL pathway in HCT116 colon carcinoma cells and U2OS osteosarcoma cells. Intriguingly,
we found that while E6 protected HCT116 cells from TRAIL, U2OS cells expressing E6 remained sensitive to TRAIL. Furthermore,
silencing FADD and procaspase-8 expression with siRNA did not prevent TRAIL-induced apoptosis in U2OS cells. However, siBid
provided significant protection from TRAIL, and the cleavage kinetics of Bid and caspase-8 revealed that Bid was cleaved prior
to the activation of caspase-8. Cathepsin B activity in U2OS cells was significantly activated shortly after exposure to TRAIL,
and the cathepsin B inhibitor, CA074Me, inhibited both TRAIL- and anti-DR5-mediated apoptosis and delayed the cleavage of
Bid. These findings suggest that TRAIL activates a pathway dependent on Bid, but largely independent of FADD and caspase-8,
in U2OS cells. 相似文献
16.
Liu Q Chen T Chen H Zhang M Li N Lu Z Ma P Cao X 《Biochemical and biophysical research communications》2004,319(3):980-986
Dendritic cells (DCs) are the most potent antigen-presenting cells that play crucial roles in the regulation of immune response. Triptolide, an active component purified from the medicinal plant Tripterygium wilfordii Hook F., has been demonstrated to act as a potent immunosuppressive drug capable of inhibiting T cell activation and proliferation. However, little is known about the effects of triptolide on DCs. The present study shows that triptolide does not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10ng/ml, as demonstrated by phosphatidylserine exposure, mitochondria potential decrease, and nuclear DNA condensation. Triptolide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that the anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs. 相似文献
17.
Rat liver mitochondria were subfractionated into outer membrane, intermembrane and mitoplast (inner membrane and matrix) fractions. Of the recovered protein kinase activity, 80–90% was found in the intermembrane fraction, while the rest was associated with mitoplast. The intermembrane prostimulated kinase was stimulated by cyclic AMP, while the mitoplast enzyme was stimulated by the nucleotide only after treatment with Triton X-100. Extracted protein kinase resolved into three peaks on DEAE-cellulose chromatography. All three peaks were present both in the intermembrane fraction and in mitoplast. One peak corresponded to the catalytic subunit of cyclic AMP-dependent protein kinase, one was a cyclic AMP-independent enzyme, and the third was the cyclic AMP-dependent type II enzyme. The endogenous incorporation of phosphate was particularly high in the outer mitochondrial membrane, and occurred also in the mitoplast fraction. The incorporation in mitoplasts was to a double band of Mr 47 500, and in outer membranes to apparently heterogeneous material of comparatively low molecular weight. 相似文献
18.
19.
Increase of Fas-induced apoptosis by inhibition of extracellular phosphorylation of Fas receptor in Jurkat cell line 总被引:1,自引:0,他引:1
Lautrette C Loum-Ribot E Petit D Vermot-Desroches C Wijdenes J Jauberteau MO 《Apoptosis : an international journal on programmed cell death》2006,11(7):1195-1204
Apoptosis signalling through the Fas pathway requires several steps of aggregation of the Fas receptor in the membrane, including
aggregation that may occur in the absence of Fas ligand. Association of Fas domains is determinant to signal transmission
following Fas ligand binding to a specific domain. The domains involved in Fas aggregation are located in its extracellular
region and contain three potential protein kinase C-binding motifs. We therefore studied the possibility that phosphorylation
of the extracellular region of Fas might be implicated in the regulation of Fas-mediated apoptosis. Inhibition experiments
of extracellular phosphorylation were performed in human Jurkat T leukemia cells with K252b, an impermeant protein-kinase
inhibitor. Extracellular phosphorylation of Fas receptor was related to ecto-kinase, as assessed by the [γ-32P] ATP labelling of Fas-116 kDa aggregates, suppressed by K252b inhibitor which significantly increased the sensitivity to
Fas-mediated apoptosis. Ecto-PKC involvement was demonstrated by bisindolylmaleimide VIII, a selective inhibitor of protein
kinase C which significantly increased both Fas aggregation in the membrane and Fas-mediated apoptosis and by the addition
of the PKC pseudo-substrate 19–36 which inhibited the phosphorylation of 116 kDa Fas aggregates. These data support a role
for Fas phosphorylation in the decreased sensitivity to apoptosis in the Jurkat T leukemia cell line.
*There was an equal contribution from these two authors. 相似文献
20.
Protein kinase D was auto-phosphorylated at Ser916 and trans-phosphorylated at Ser744/Ser748 in Rat-2 fibroblasts treated with lysophosphatidic acid. Both phosphorylations were inhibited by 1-butanol, which blocks phosphatidic acid formation by phospholipase D. The phosphorylations were also reduced in Rat-2 clones with decreased phospholipase D activity. Platelet-derived growth factor-induced protein kinase D phosphorylation showed a similar requirement for phospholipase D, but that induced by 4beta-phorbol 12 myristate 13-acetate did not. Propranolol an inhibitor of diacylglycerol formation from phosphatidic acid blocked the phosphorylation of protein kinase D, whereas dioctanoylglycerol induced it. The temporal pattern of auto-phosphorylation of protein kinase D closely resembled that of phospholipase D activation and preceded the trans-phosphorylation by protein kinase C. These results suggest that protein kinase D is activated by lysophosphatidic acid through sequential phosphorylation and that diacylglycerol produced by PLD via phosphatidic acid is required for the autophosphorylation that occurs prior to protein kinase C-mediated phosphorylation. 相似文献