首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Associative Training of Hermissenda   总被引:3,自引:2,他引:1       下载免费PDF全文
Reflex behavior of Hermissenda in response to visual and rotational stimuli is described. It is shown that repeated association of light with rotation modifies the subsequent responses of the animals to light. This modification does not occur after the same period of light or rotation alone. The effect of the associative training is strongly dependent on the amount of daily light with which the animals are maintained.  相似文献   

2.
The two equilibrium receptor organs (statocysts) of Nautilus are avoid sacks, half-filled with numerous small, free-moving statoconia and half with endolymph. The inner surface of each statocyst is lined with 130,000-150,000 primary sensory hair cells. The hair cells are of two morphological types. Type A hair cells carry 10-15 kinocilia arranged in a single ciliary row; they are present in the ventral half of the statocyst. Type B hair cells carry 8-10 irregularly arranged kinocilia; they are present in the dorsal half of the statocyst. Both type of hair cells are morphologically polarized. To test whether these features allow the Nautilus statocyst to sense angular accelerations, behavioural experiments were performed to measure statocyst-dependent funnel movements during sinusoidal oscillations of restrained Nautilus around a vertical body axis. Such dynamic rotatory stimulation caused horizontal phase-locked movements of the funnel. The funnel movements were either in the same direction (compensatory funnel response), or in the opposite direction (funnel follow response) to that of the applied rotation. Compensatory funnel movements were also seen during optokinetic stimulation (with a black and white stripe pattern) and during stimulations in which optokinetic and statocyst stimulations were combined. These morphological and behavioural findings show that the statocysts of Nautilus, in addition to their function as gravity receptor organs, are able to detect rotatory movements (angular accelerations) without the specialized receptor systems (crista/cupula systems) that are found in the statocysts of coleoid cephalopods. The findings further indicate that both statocyst and visual inputs control compensatory funnel movements.  相似文献   

3.
Summary Intracellular recordings were obtained from primary and secondary sensory hair cells in the anterior transverse crista segment of the squid (Alloteuthis subulata) statocyst during imposed displacements of the overlying cupula. The secondary sensory hair cells were depolarized by ventral movements of the cupula and hyperpolarized by dorsal cupula movements. The displacement/response curve was asymmetric around the zero position and sigmoidal in shape, similar to that already described for vertebrate hair cells. The cells are estimated to have a sensitivity of at least 0.5 mV per degree angle of cilia displacement. The responses showed pronounced adaptation and could be blocked by bath applied alcohols, such as heptanol or octanol, or by high concentrations of aminoglycosides.The primary sensory hair cells were depolarized by dorsal movements of the cupula, usually responding with a burst of action potentials. The displacement/response curve was also sigmoidal in shape and the firing pattern showed strong adaptation to maintained displacements of the cupula.The cupula itself appeared to be irregular in shape, extending much further into the statocyst cavity in its central part than at its edges. This is likely to result in differences in the responses of the underlying hair cells along the length of the crista ridge.  相似文献   

4.
Hair Cell Interactions in the Statocyst of Hermissenda   总被引:10,自引:5,他引:5       下载免费PDF全文
Hair cells in the statocyst of Hermissenda crassicornis respond to mechanical stimulation with a short latency (<2 ms) depolarizing generator potential that is followed by hyperpolarization and inhibition of spike activity. Mechanically evoked hyperpolarization and spike inhibition were abolished by cutting the static nerve, repetitive mechanical stimulation, tetrodotoxin (TTX), and Co++. Since none of these procedures markedly altered the generator potential it was concluded that the hyperpolarization is an inhibitory synaptic potential and not a component of the mechanotransduction process. Intracellular recordings from pairs of hair cells in the same statocyst and in statocysts on opposite sides of the brain revealed that hair cells are connected by chemical and/or electrical synapses. All chemical interactions were inhibitory. Hyperpolarization and spike inhibition result from inhibitory interactions between hair cells in the same and in opposite statocysts.  相似文献   

5.
Hair Cell Generator Potentials   总被引:13,自引:9,他引:4       下载免费PDF全文
A technique is introduced using a piezoelectric device to stimulate hair cells of a molluscan statocyst while recording their responses intracellularly. Statocyst displacements produced with the technique are calibrated with stroboscopic photography. Properties of the hair cells' response to currents and mechanical stimulation are studied. The hair cell generator potential arises from a conductance increase and, for a certain range, is a logarithmic function of the amplitude of the displacement stimulus.  相似文献   

6.
Summary The two statocysts of the veliger larva of Rostanga pulchra are positioned within the base of the foot. They are spherical, fluid-filled capsule that contain a large, calcareous statolith and several smaller concretions. The epithelium of the statocyst is composed of 10 ciliated sensory cells (hair cells) and 11 accessory cells. The latter group stains darkly and includes 2 microvillous cells, 7 supporting cells, and 2 glial cells. The hair cells stain lightly and each gives rise to an axon; two types can be distinguished. The first type, in which a minimum of 3 cilia are randomly positioned on the apical cell membrane, is restricted to the upper portion of the statocyst. The second type, in which 9 to 11 cilia are arranged in a slightly curved row, is found exclusively around the base of the statocyst. Each statocyst is connected dorso-laterally to the ipsilateral cerebral ganglion by a short static nerve, formed by axons arising from the hair cells. Ganglionic neurons synapse with these axons as the static nerve enters the cerebral ganglion. The lumen of the statocyst is continuous with a blind constricted canal located beneath the static nerve.A diagram showing the structure of the statocyst and its association with the nervous system is presented. Possible functions of the statocyst in relation to larval behavior are discussed.  相似文献   

7.
Summary Intracellular recordings were obtained from the hair cells and afferent neurones of the angular acceleration receptor system of the statocyst of the squid,Alloteuthis subulata. Electrical stimulation of the efferent fibres in the crista nerve (minor) evoked responses in all of the secondary hair cells recorded from (n=211). 48% of the secondary air cells responded with a small depolarization, 15% with a hyperpolarization, and 37% with a depolarization followed by a hyperpolarization. The depolarizations and hyperpolarizations had mean stimulus to response delays of 6.7 ms and 24 ms, and reversal potentials of about –1 mV and –64 mV, respectively. Both types of potential increased in amplitude, up to a point, when the stimulus shock was increased and facilitation and/or summation effects could be obtained by applying multiple shocks. These data, together with the fact that both responses could be blocked by bath application of cobalt or cadmium, indicate that the secondary hair cells receive both inhibitory and excitatory efferent inputs and that these are probably mediated via chemical synapses. No efferent responses were seen in the primary hair cells but both depolarizing and hyperpolarizing efferent responses were obtained from the afferent neurones.  相似文献   

8.
Abstract: The synaptic convergence of the eyes and the vestibular hair cells in the nudibranch mollusc Hermissenda has been shown previously to mediate the learning of simple visual-vestibular associations. The neurotransmitter mediating this interaction between the visual and vestibular organs was characterized. HPLC chromatography, confirmed by mass spectroscopic analysis, demonstrated endogenous GABA in the statocysts, in a concentration approximately 150 times greater than in the whole CMS. Additional confirmation was provided by immunocytochemical localization of GABA in hair cell axons and branches that converge with photoreceptor terminal branches. Depolarization of the hair cells in the caudal region of the statocyst in response to positive current injection or vibratory stimulation caused a hyperpolarization and a cessation of the type B photoreceptor impulse activity. The inhibition of the B cell was unaffected by addition to the artificial sea water bath of the adrenergic antagonist yohimbine (250 μM), the cholinergic antagonist atropine (250 μM), and the serotonergic antagonist imipramine (50 μM). In contrast, the GABAA antagonist bicuculline (250 μM) significantly reduced the inhibitory interaction. Moreover, the GABA reuptake inhibitor guvisine (250 μM)M) increased the hyperpolarization. Pressure microapplication of GABA (12.5 or 25 μM) onto the terminal branches of the B cell resulted in a concentration-dependent hyperpolarization and cessation of spikes in the B cell. Depolarization of the caudal hair cell, or direct GABA application, decreased input resistance across the B cell soma membrane. Moreover, removal of chloride from the extracellular solution reduced inhibition of the B cell induced by GABA application or hair cell stimulation. Furthermore, application of the GABAB agonist baclofen hyperpolarized the type B cell and reduced or eliminated spontaneous impulse activity at the resting membrane potential. The reversal potentials for inhibition induced in all three procedures ranged from ?70 to ?80 mV and were consistent with mixed Cl- and K+ conductances. These results implicate GABA as the endogenous neurotransmitter mediating visual-vestibular interactions in this animal, and suggest a possible role of GABA in visual-vestibular associative learning.  相似文献   

9.

Background

The mollusk statocyst is a mechanosensing organ detecting the animal''s orientation with respect to gravity. This system has clear similarities to its vertebrate counterparts: a weight-lending mass, an epithelial layer containing small supporting cells and the large sensory hair cells, and an output eliciting compensatory body reflexes to perturbations.

Methodology/Principal Findings

In terrestrial gastropod snail we studied the impact of 16- (Foton M-2) and 12-day (Foton M-3) exposure to microgravity in unmanned orbital missions on: (i) the whole animal behavior (Helix lucorum L.), (ii) the statoreceptor responses to tilt in an isolated neural preparation (Helix lucorum L.), and (iii) the differential expression of the Helix pedal peptide (HPep) and the tetrapeptide FMRFamide genes in neural structures (Helix aspersa L.). Experiments were performed 13–42 hours after return to Earth. Latency of body re-orientation to sudden 90° head-down pitch was significantly reduced in postflight snails indicating an enhanced negative gravitaxis response. Statoreceptor responses to tilt in postflight snails were independent of motion direction, in contrast to a directional preference observed in control animals. Positive relation between tilt velocity and firing rate was observed in both control and postflight snails, but the response magnitude was significantly larger in postflight snails indicating an enhanced sensitivity to acceleration. A significant increase in mRNA expression of the gene encoding HPep, a peptide linked to ciliary beating, in statoreceptors was observed in postflight snails; no differential expression of the gene encoding FMRFamide, a possible neurotransmission modulator, was observed.

Conclusions/Significance

Upregulation of statocyst function in snails following microgravity exposure parallels that observed in vertebrates suggesting fundamental principles underlie gravi-sensing and the organism''s ability to adapt to gravity changes. This simple animal model offers the possibility to describe general subcellular mechanisms of nervous system''s response to conditions on Earth and in space.  相似文献   

10.
An electrophysiological study of interactions between hair cells within the statocyst ofHelix lucorum was undertaken by intracellular and extracellular recording. Analysis of the results led to the following conclusions. First, some hair cells, subtending on angle on the arc of the statocyst sphere of not more than 90°, were electrically connected; electrical synapses, moreover, possessed polar properties; the coefficient of coupling in one direction was about 10 times greater than the other. Second, some connections between hair cells which subtended an angle of not more than 90° were mixed electrochemical in character. The excitatory chemical component in this case was directed in a direction opposite to effective electrical conduction. Third, inhibitory connections were observed between statocyst receptors: monosynaptic chemical (subtending an angle of about 180°, evidently, between the hair cells) and polysynaptic weak inhibitory interactions (subtending an angle in this case of not less than 90–100° between the test neurons). Fourth, all types of connection between hair cells were observed in CNS preparations with the vestibular nerve divided close to the cerebral ganglion. This means that zones of synaptic contacts between these receptors are located not in the CNS, but close to the statocyst.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 230–239, March–April, 1985.  相似文献   

11.
Responses of hair cells to statocyst rotation   总被引:3,自引:3,他引:0       下载免费PDF全文
A new technique is described for stimulating hair cells of the Hermissenda statocyst. The preparation and recording apparatus can be rotated at up to 78 rpm while recording intracellular potentials. Hair cells in front of the centrifugal force vector depolarize in response to rotation. Hair cells in back of the centrifugal force vector hypoerpolarize in response to rotation. Mechanisms by which the hair cell generator potential might arise are examined.  相似文献   

12.
Intracellular recordings were obtained from single visual cells of the scallop, Pecten irradians. Two types of units are found. One type gives a graded, depolarizing response to light and the other a graded, hyperpolarizing response. The depolarizing cells are 2–3 log units more sensitive to light and have a longer latency than the hyperpolarizing type. At high light intensities the depolarizing cells are inactivated while the hyperpolarizing cells maintain their responses. When action potentials are seen they occur during illumination in depolarizing cells ("on" response) and after illumination in hyperpolarizing cells ("off" response). The evidence suggests that the depolarizing responses are from the microvilli-brearing proximal cells, and the hyperpolarizing responses from the ciliary-type distal cells of the retina, and that both responses are directly produced by light.  相似文献   

13.
A pair of statocysts are located in the periganglionic connective tissue of the pedal ganglia of the opisthobranch mollusc Pleurobranchaea japonica. Light- and electron-microscopic observations show that the sensory epithelium of the statocyst consists of 13 disk-shaped hair cells. Each hair cell sends a single axon to the cerebral ganglion through the static nerve. Neurotransmitters in the hair cells were examined by means of immunocytochemistry. Our results show that the 13 sensory hair cells include two SCPB-, three FMRFamide-, and eight histamine-like immunoreactive cells. One hair cell contains a transmitter substance other than SCPB-, FMRFamide, histamine, serotonin, or GABA. One of the two SCPB-like immunoreactive cells, located in the ventral region of the statocyst, is the largest cell in the statocyst. The other, located in the anterodorsal region, shows co-immunoreactivity to both SCPB and FMRFamide antisera. Among the three FMRFamide-like immunoreactive hair cells, one is located in the posteroventral region, separated from the other two, which are adjacent to each other in the anterodorsal region. All the eight histamine-like immunoreactive hair cells are adjacent to one another, occupying the remainder of a triangular pyramid-shaped region. These immunoreactive cells are symmetrically placed in the right and left statocysts. This mosaic arrangement was identical among specimens. Thus the static nerve may code information about position or movement of the statoliths, with the use of different transmitters in the mosaic arrangement of the hair cells.  相似文献   

14.
Molecular target therapy for cancer is characterized by unique adverse effects that are not usually observed with cytotoxic chemotherapy. For example, the anaplastic lymphoma kinase (ALK)-tyrosine kinase inhibitor crizotinib causes characteristic visual disturbances, whereas such effects are rare when another ALK-tyrosine kinase inhibitor, alectinib, is used. To elucidate the mechanism responsible for these visual disturbances, the responses to light exhibited by retinal ganglion cells treated with these agents were evaluated using a C57BL6 mouse ex vivo model. Both crizotinib and alectinib changed the firing rate of ON and OFF type retinal ganglion cells. However, the ratio of alectinib-affected cells (15.7%) was significantly lower than that of crizotinib-affected cells (38.6%). Furthermore, these drugs changed the response properties to light stimuli of retinal ganglion cells in some of the affected cells, i.e., OFF cells responded to both ON and OFF stimuli, etc. Finally, the expressions of ALK (a target receptor of both crizotinib and alectinib) and of MET and ROS1 (additional target receptors of crizotinib) were observed at the mRNA level in the retina. Our findings suggest that these drugs might target retinal ganglion cells and that the potency of the drug actions on the light responses of retinal ganglion cells might be responsible for the difference in the frequencies of visual disturbances observed between patients treated with crizotinib and those treated with alectinib. The present experimental system might be useful for screening new molecular target agents prior to their use in clinical trials.  相似文献   

15.
The following conclusions were drawn from an electrophysiological study of statocyst hair cell activity inHelix lucorum using intracellular recording. The maximal input resistance of the receptors is observed with hyperpolarizing currents of not more than 0.1 nA, close in magnitude to that arising during inhibitory synaptic transmission. Background noise, a special type of activity of statocyst hair cells, is neither synaptic nor pacemaker in nature, but depends entirely on the degree of contact between the cilia and statoconia. The hair cells possess pacemaker properties which are manifested on depolarization. The zone of action potential generation of the receptors lies in the axon. Inhibitory interactions take place between hair cells, leading to the generation of IPSPs in their spontaneous activity, which do not disappear after division of the vestibular nerve.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 222–229, March–April, 1985.  相似文献   

16.
1. In the crayfish brain, the responses of local spiking interneurons to body roll simulated by bending of statocyst hairs, were investigated with intracellular recording and staining techniques. The neurons had two separate branching portions in the protocerebrum and the deutocerebrum. They were named as type-I local neurons and further classified into 5 types (ac-U, vplc-U, vplc-B, vupc-U, vupc-B). 2. Vupc-U neurons showed excitatory responses and vplc-U neurons showed inhibitory responses to inward hair deflection of the statocyst ipsilateral to their deutocerebral branches. The other 3 types were of mixed populations of the interneurons showing either excitatory or inhibitory responses to the stimulation. 3. Of 10 type-I local neurons showing excitatory responses to inward hair deflection, 6 interneurons had output effects on oculomotor and/or descending neurons. All these 6 interneurons showed large EPSPs and much higher frequency of spikes to the hair stimulation than those of the other 4. All 8 type-I local neurons that showed inhibitory responses had no output effects. 4. Type-I local neurons controlled two equilibrium responses, compensatory eye movement and righting reflex, either simultaneously or independently.  相似文献   

17.
Summary The statocyst ofPecten is composed of hair cells and supporting cells. The hair cells bear kinocilia and microvilli at their distal ends and the supporting cells bear microvilli. The cilia have a 9+2 internal filament content, and arise from basal bodies that have roots, basal feet and microtubular connections. Two different ciliary arrangements are described, one with a small number of cilia arranged in a ring, and another with many more cilia arranged in rows. Below the hair cells are probable synapses. A ciliated duct connects to the lumen of the static sac and passes through the centre of the static nerve. The hair cells in the statocyst ofPterotrachea bear kinocilia and microvilli. The possible importance of cilia and microvilli in the transduction process is discussed.We would like to thank ProfessorJ. Z. Young for bringing specimens ofPterotrachea from Naples and also the staff of the Stazione Zoologica for the provision of specimens, Dr.M. Land for providing specimens ofPecten, the Science Research Council (U.K.) for providing the electron microscope used in much of the study and also for a grant to one of us (V.C.B.), and Mrs.J. Parkers and Mr.R. Moss and Mrs.J. Hamilton for much photographic and technical assistance.  相似文献   

18.
The shaker 2 (sh2) and pirouette (pi) mouse mutants display severe inner ear dysfunction that involves both auditory and vestibular manifestation. Pathology of the stereocilia of hair cells has been found in both mutants. This study was designed to further our knowledge of the pathological characteristics of the inner ear sensory epithelia in both the sh2 and pi strains. Measurements of auditory brainstem responses indicated that both mutants were profoundly deaf. The morphological assays were specifically designed to characterize a pathological actin bundle that is found in both the inner hair cells and the vestibular hair cells in all five vestibular organs in these two mutants. Using light microscope analysis of phalloidin-stained specimens, these actin bundles could first be detected on postnatal day 3. As the cochleae matured, each inner hair cell and type I vestibular hair cell contained a bundle that spans from the region of the cuticular plate to the basal end of the cell, then extends along with cytoplasm and membrane, towards the basement membrane. Abnormal contact with the basement membrane was found in vestibular hair cells. Based on the shape of the cellular extension and the actin bundle that supports it, we propose to name these extensions “cytocauds.” The data suggest that the cytocauds in type I vestibular hair cells and inner hair cells are associated with a failure to differentiate and detach from the basement membrane.  相似文献   

19.
20.
Neurons in the cerebropleural ganglia (CPG), photoreceptors in the eye, optic ganglion cells, and statocyst hair cells of the nudibranch mollusk Hermissenda crassicornis responded in specific ways, as recorded intracellularly, to stimulation of the chemosensory pathway originating at the tentacular chemoreceptors as well as to stimulation of the visual pathway originating at the photoreceptors. Synaptic inhibition of photoreceptors occurs via the chemosensory pathway. The possible significance of such intersensory interaction is discussed with reference to preliminary investigation of the animal's gustatory behavior and possible neural mechanisms of behavioral choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号