首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria-derived oxygen-free radical(s) are important mediators of oxidative cellular injury. It is widely hypothesized that excess NO enhances O(2)(?-) generated by mitochondria under certain pathological conditions. In the mitochondrial electron transport chain, succinate-cytochrome c reductase (SCR) catalyzes the electron transfer reaction from succinate to cytochrome c. To gain the insights into the molecular mechanism of how NO overproduction may mediate the oxygen-free radical generation by SCR, we employed isolated SCR, cardiac myoblast H9c2, and endothelial cells to study the interaction of NO with SCR in vitro and ex vivo. Under the conditions of enzyme turnover in the presence of NO donor (DEANO), SCR gained pro-oxidant function for generating hydroxyl radical as detected by EPR spin trapping using DEPMPO. The EPR signal associated with DEPMPO/(?)OH adduct was nearly completely abolished in the presence of catalase or an iron chelator and partially inhibited by SOD, suggesting the involvement of the iron-H(2)O(2)-dependent Fenton reaction or O(2)(?-)-dependent Haber-Weiss mechanism. Direct EPR measurement of SCR at 77K indicated the formation of a nonheme iron-NO complex, implying that electron leakage to molecular oxygen was enhanced at the FAD cofactor, and that excess NO predisposed SCR to produce (?)OH. In H9c2 cells, SCR-dependent oxygen-free radical generation was stimulated by NO released from DEANO or produced by the cells following exposure to hypoxia/reoxygenation. With shear exposure that led to overproduction of NO by the endothelium, SCR-mediated oxygen-free radical production was also detected in cultured vascular endothelial cells.  相似文献   

2.
Uncoupling of nitric-oxide synthase (NOS) by deficiency of the substrate L-arginine or the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4) is known to generate the reactive oxygen species H2O2 and superoxide. Discrimination between these two compounds is usually achieved by spin trapping of superoxide. We measured superoxide formation by uncoupled rat neuronal NOS, which contained one equivalent of tightly bound BH4 per dimer, using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap. As expected, the Ca2+-stimulated enzyme exhibited reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity that was accompanied by generation of superoxide and H2O2 in the absence of added L-arginine and BH4. Addition of BH4 (10 microM) did not significantly affect the rate of H2O2 formation but almost completely inhibited the apparent formation of superoxide, suggesting direct formation of H2O2. Although L-arginine (0.1 mM) increased the rate of NADPH oxidation about two-fold, the substrate largely attenuated apparent formation of both superoxide and H2O2, indicating that the spin trap did not efficiently outcompete the reaction between NO and superoxide. The efficiency of DEPMPO to scavenge superoxide in the presence of NO was studied by measuring free NO with a Clark-type electrode under conditions of NO/superoxide cogeneration. Neuronal NOS half-saturated with BH4 and the donor compound 3-morpholinosydnonimine (SIN-1) were used as enzymatic and nonenzymatic sources of NO/superoxide, respectively. Neither of the two systems gave rise to considerable NO signals in the presence of 50-100 mM DEPMPO, and even at 400 mM the spin trap uncovered less than 50% of the NO release that was detectable in the presence of 5000 U/ml superoxide dismutase. These results indicate that DEPMPO and all other currently available superoxide spin traps do not efficiently outcompete the reaction with NO. In addition, the similar behavior of nNOS and SIN-1 provides further evidence for NO as initial product of the NOS reaction.  相似文献   

3.
Independently, superoxide (O2-) and nitric oxide (NO) are biologically important signaling molecules. When co-generated, these radicals react rapidly to form powerful oxidizing and nitrating intermediates. Although this reaction was once thought to be solely cytotoxic, herein we demonstrate using MCF7, macrophage, and endothelial cells that when nanomolar levels of NO and O2- were produced concomitantly, the effective NO concentration was established by the relative fluxes of these two radicals. Differential regulation of sGC, pERK, HIF-1alpha, and p53 were used as biological dosimeters for NO concentration. Introduction of intracellular- or extracellular-generated O2- during NO generation resulted in a concomitant increase in oxidative intermediates with a decrease in steady-state NO concentrations and a proportional reduction in the levels of sGC, ERK, HIF-1alpha, and p53 regulation. NO responses were restored by addition of SOD. The intermediates formed from the reactions of NO with O2- were non-toxic, did not form 3-nitrotyrosine, nor did they elicit any signal transduction responses. H2O2 in bolus or generated from the dismutation of O2- by SOD, was cytotoxic at high concentrations and activated p53 independent of NO. This effect was completely inhibited by catalase, suppressed by NO, and exacerbated by intracellular catalase inhibition. We conclude that the reaction of O2- with NO is an important regulatory mechanism, which modulates signaling pathways by limiting steady-state levels of NO and preventing H2O2 formation from O2-.  相似文献   

4.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   

5.
Ketoximes undergo a cytochrome P450-catalyzed oxidation to nitric oxide and ketones in liver microsomes. In addition, nitric oxide synthase (NOS) can catalyze the oxidative denitration of the >C=N-OH group of amidoximes. The objective of this work was to characterize the oxidation of a ketoxime (acetoxime) and to assess the ability of NOS to catalyze the generation of nitric oxide/nitrogen monoxide (*NO) from acetoxime. Acetoxime was oxidized to NO2- (and NO3-) by microsomes enriched with several P450 isoforms, including CYP2E1, CYP1A1, and CYP2B1. Nitric oxide was identified as an intermediate in the overall reaction. Superoxide dismutase and catalase significantly inhibited the reaction. Exogenous iron increased the microsomal generation of NO2- from acetoxime, while metal chelators (desferrioxamine, EDTA, DTPA) inhibited it. A Fenton-like system (Fe2+ plus H2O2, pH 7.4) consumed acetoxime with production of NO2- and NO3-, whereas oxidation by superoxide or by H2O2 was inefficient. The results presented suggest a role for hydroxyl radical-like oxidants in the oxidation of acetoxime to nitric oxide. O-Acetylacetoxime and O-tert-butylacetoxime were not oxidized by a Fenton system or by liver microsomes to any significant extent. Formation of the 5,5'-dimethyl-1-pyrroline-N-oxide/. OH adduct by a Fenton system was significantly inhibited by acetoxime, while O-acetylacetoxime and O-tert-butylacetoxime were inactive. These results suggest that the. OH-dependent oxidation of acetoxime initially proceeds via abstraction of a hydrogen atom from its hydroxyl group, as opposed to the oxidation of its >C=N- function. HepG2 cells with low levels of expression of P450 did not significantly produce NO2- from acetoxime, while HepG2 cells expressing CYP2E1 did, and this generation was blocked by a CYP2E1 inhibitor. Acetoxime was inactive either as a substrate or as an inhibitor of iNOS activity. These results indicate that reactive oxygen species play a key role in the oxidation of acetoxime to. NO by liver microsomes by a mechanism involving H abstraction from the OH moiety by hydroxyl radical-like oxidants and suggest the possibility that acetoxime may be an effective producer of. NO primarily in the liver by a pathway independent of NOS.  相似文献   

6.
Nitric oxide negatively modulates wound signaling in tomato plants   总被引:24,自引:0,他引:24  
Synthesis of proteinase inhibitor I protein in response to wounding in leaves of excised tomato (Lycopersicon esculentum) plants was inhibited by NO donors sodium nitroprusside and S-nitroso-N-acetyl-penicillamine. The inhibition was reversed by supplying the plants with the NO scavenger 2-(4-carboxiphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. NO also blocked the hydrogen peroxide (H(2)O(2)) production and proteinase inhibitor synthesis that was induced by systemin, oligouronides, and jasmonic acid (JA). However, H(2)O(2) generated by glucose oxidase and glucose was not blocked by NO, nor was H(2)O(2)-induced proteinase inhibitor synthesis. Although the expression of proteinase inhibitor genes in response to JA was inhibited by NO, the expression of wound signaling-associated genes was not. The inhibition of wound-inducible H(2)O(2) generation and proteinase inhibitor gene expression by NO was not due to an increase in salicylic acid, which is known to inhibit the octadecanoid pathway. Instead, NO appears to be interacting directly with the signaling pathway downstream from JA synthesis, upstream of H(2)O(2) synthesis. The results suggest that NO may have a role in down-regulating the expression of wound-inducible defense genes during pathogenesis.  相似文献   

7.
The mechanisms of nitric oxide (NO) synthesis in plants have been extensively investigated. NO degradation can be just as important as its synthesis in controlling steady-state levels of NO. Here, we examined NO degradation in mitochondria isolated from potato tubers and the contribution of the respiratory chain to this process. NO degradation was faster in mitochondria energized with NAD(P)H than with succinate or malate. Oxygen consumption and the inner membrane potential were transiently inhibited by NO in NAD(P)H-energized mitochondria, in contrast to the persistent inhibition seen with succinate. NO degradation was abolished by anoxia and superoxide dismutase, which suggested that NO was consumed by its reaction with superoxide anion (O2(-)). Antimycin-A stimulated and myxothiazol prevented NO consumption in succinate- and malate-energized mitochondria. Although favored by antimycin-A, NAD(P)H-mediated NO consumption was not abolished by myxothiazol, indicating that an additional site of O2(-) generation, besides complex III, stimulated NO degradation. Larger amounts of O2(-) were generated in NAD(P)H- compared to succinate- or malate-energized mitochondria. NAD(P)H-mediated NO degradation and O2(-) production were stimulated by free Ca2+ concentration. Together, these results indicate that Ca2+-dependent external NAD(P)H dehydrogenases, in addition to complex III, contribute to O2(-) production that favors NO degradation in potato tuber mitochondria.  相似文献   

8.
Isolated copper/zinc superoxide dismutase (Cu/Zn-SOD) or manganese superoxide dismutase (Mn-SOD) together with hydrogen peroxide (H(2)O(2)) caused rapid breakdown of nitric oxide (NO) and production of peroxynitrite (ONOO(-)) indicated by the oxidation of dihydrorhodamine-1,2,3 (DHR) to rhodamine-1,2,3. The breakdown of NO by this reaction was inhibited by cyanide (CN(-)) or by diethyldithiocarbamate (DETC), both Cu/Zn-SOD inhibitors, and the conversion of DHR to rhodamine-1,2,3 was inhibited by incubating Cu/Zn-SOD with either CN(-) or with high levels of H(2)O(2) or by including urate, a potent scavenger of ONOO(-). In the presence of phenol, the reaction of SOD, H(2)O(2) and NO caused nitration of phenol, which is known to be a footprint of ONOO(-) formation. H(2)O(2) addition to macrophages (cell line J774) expressing the inducible form of NO synthase (i-NOS) caused rapid breakdown of the NO they produced and this was also inhibited by CN(-) and by DETC. Subsequent ONOO(-) production by the macrophages, via this reaction, was inhibited by CN(-), high levels of H(2)O(2) or by urate. H(2)O(2) addition to i-NOS macrophages also caused cell death which was, in part, prevented by DETC or urate. We also found inhibition of mitochondrial respiration with malate and pyruvate as substrates, when isolated liver mitochondria were incubated with Cu/Zn-SOD, H(2)O(2) and NO. Inhibition of mitochondrial respiration was partly prevented by urate. The production of ONOO(-) by SOD may be of significant importance pathologically under conditions of elevated H(2)O(2) and NO levels, and might contribute to cell death in inflammatory and neurodegenerative diseases, as well as in macrophage-mediated host defence.  相似文献   

9.
Mitochondrial superoxide (O2*-) production is an important mediator of oxidative cellular injury. Succinate-cytochrome c reductase (SCR) of the electron transport chain has been implicated as an essential part of the mediation of O2*- generation and an alternative target of nitric oxide (NO) in the regulation of mitochondrial respiration. The Q cycle mechanism plays a central role in controlling both events. In the present work, O2*- generation by SCR was measured with the EPR spin-trapping technique using DEPMPO (5-diethoxylphosphoryl-5-methyl-1-pyrroline N-oxide) as the spin trap. In the presence of succinate, O2*- generation from SCR was detected as the spin adduct DEPMPO/*OOH. Inhibitors of the Q(o*-) site only marginally reduced (20-30%) this O2*- production, suggesting a secondary role of Q(o*-) in the mediation of O2*- generation. Addition of cyanide significantly decreased (approximately 70%) O2*- production, indicating the involvement of the heme component. UV-visible spectral analysis revealed that oxidation of ferrocytochrome b was accompanied by cytochrome c(1) reduction, and the reaction was mediated by the formation of an O2*- intermediate, indicating a direct role for cytochrome b in O2*- generation. In the presence of NO, DEPMPO/*OOH production was progressively diminished, implying that NO interacted with SCR or trapped the O2*-. The consumption of NO by SCR was investigated by electrochemical detection using an NO electrode. In the presence of succinate, SCR-mediated NO consumption was observed and inhibited by the addition of superoxide dismutase, suggesting the involvement of O2*-. Under the conditions of argon saturation, the NO consumption rate was not enhanced by succinate, suggesting a direct role for O2*- in the mediation of NO consumption. In the presence of succinate, oxidation of the ferrocytochrome b moiety of SCR was accelerated by the addition of NO, and was inhibited by argon saturation, indicating an indirect role for cytochrome b in the mediation of NO consumption.  相似文献   

10.
Reactive intermediates generated by phagocytes damage DNA and may contribute to the link between chronic inflammation and cancer. Myeloperoxidase, a heme protein secreted by activated phagocytes, is a potential catalyst for such reactions. Recent studies demonstrate that this enzyme uses hydrogen peroxide (H2O2) and nitrite (NO2-) to generate reactive nitrogen species which convert tyrosine to 3-nitrotyrosine. We now report that activated human neutrophils use myeloperoxidase, H2O2, and NO2- to nitrate 2'-deoxyguanosine, one of the nucleosides of DNA. Through HPLC, UV/vis spectroscopy, and mass spectrometry, the two major products of this reaction were identified as 8-nitroguanine and 8-nitro-2'-deoxyguanosine. Nitration required each component of the complete enzymatic system and was inhibited by catalase and heme poisons. However, it was independent of chloride ion and little affected by scavengers of hypochlorous acid, suggesting that the reactive agent is a nitrogen dioxide-like species that results from the one-electron oxidation of NO2- by myeloperoxidase. Alternatively, 2'-deoxyguanosine might be oxidized directly by the enzyme to yield a radical species which subsequently reacts with NO2- or NO2* to generate the observed products. Human neutrophils stimulated with phorbol ester also generated 8-nitroguanine and 8-nitro-2'-deoxyguanosine. The reaction required NO2- and was inhibited by catalase and heme poisons, implicating myeloperoxidase in the cell-mediated pathway. These results indicate that human neutrophils use the myeloperoxidase-H2O2-NO2- system to generate reactive species that can nitrate the C-8 position of 2'-deoxyguanosine. Our observations raise the possibility that reactive nitrogen species generated by myeloperoxidase and other peroxidases contribute to nucleobase oxidation and tissue injury at sites of inflammation.  相似文献   

11.
The xanthine oxidase reaction causes a co-oxidation of NH3 to NO2-, which was inhibitable by superoxide dismutase, catalase, hydroxyl radical scavengers, or by the chelating agents, desferrioxamine or diethylene triaminepentaacetic acid. Hydroxylamine was oxidized to NO2- much more rapidly than was NH3, and in this case superoxide dismutase or the chelating agents inhibited but catalase or the HO. scavengers did not. Hydrazine was not detectably oxidized to NO2-, and NO2- was not oxidized to NO3-, by the xanthine oxidase reaction. These results are accommodated by a reaction scheme involving (a) the metal-catalyzed production of HO. from O2- + H2O2; (b) the oxidation of H3N to H2N. by OH.; (c) the coupling of H2N. with O2- to yield peroxylamine, which hydrolyzes to hydroxylamine plus H2O2; (d) the metal-catalyzed oxidation of HO-NH2 to (Formula: see text), which couples with O2- to yield (Formula: see text), which finally dehydrates to yield NO2-.  相似文献   

12.
Peroxynitrite (ONOO(-)/ONOOH), the product of the diffusion-limited reaction of nitric oxide (*NO) with superoxide (O(-*)(2)), has been implicated as an important mediator of tissue injury during conditions associated with enhanced *NO and O(-*)(2) production. Although several groups of investigators have demonstrated substantial oxidizing and cytotoxic activities of chemically synthesized peroxynitrite, others have proposed that the relative rates of *NO and production may be critical in determining the reactivity of peroxynitrite formed in situ (Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B. (1996) J. Biol. Chem. 271, 40-47). In the present study, we examined the mechanisms by which excess O(-*)(2) or *NO production inhibits peroxynitrite-mediated oxidation reactions. Peroxynitrite was generated in situ by the co-addition of a chemical source of *NO, spermineNONOate, and an enzymatic source of O(-*)(2), xanthine oxidase, with either hypoxanthine or lumazine as a substrate. We found that the oxidation of the model compound dihydrorhodamine by peroxynitrite occurred via the free radical intermediates OH and NO(2), formed during the spontaneous decomposition of peroxynitrite and not via direct reaction with peroxynitrite. The inhibitory effect of excess O(-*)(2) on the oxidation of dihydrorhodamine could not be ascribed to the accumulation of the peroxynitrite scavenger urate produced from the oxidation of hypoxanthine by xanthine oxidase. A biphasic oxidation profile was also observed upon oxidation of NADH by the simultaneous generation of *NO and O(-*)(2). Conversely, the oxidation of glutathione, which occurs via direct reaction with peroxynitrite, was not affected by excess production of *NO. We conclude that the oxidative processes initiated by the free radical intermediates formed from the decomposition of peroxynitrite are inhibited by excess production of *NO or O(-*)(2), whereas oxidative pathways involving a direct reaction with peroxynitrite are not altered. The physiological implications of these findings are discussed.  相似文献   

13.
Beta-thujaplicin Is a natural troponoid with strong antifungal, antiviral, and anticancer activities. Beta-thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. Superoxide anion radical (O2*-) induced cell death and inhibited beta-thujaplicin accumulation, whereas hydrogen peroxide (H2O2) induced beta-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2*- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced beta-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. Interaction among NO, H2O2, and O2*- shows that NO production and H2O2 production are interdependent, but NO and O2*- accumulation were negatively related because of coconsumption of NO and O2*-. NO- and O2*- -induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2*- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.  相似文献   

14.
Yu LZ  Wu XQ  Ye JR  Zhang SN  Wang C 《Plant cell reports》2012,31(10):1813-1821
The content of NO and H(2)O(2) as well as the activities of nitric oxide synthase (NOS)-like and nitrate reductase (NR) were monitored in the needles of Pinus thunbergii infected by Bursaphelenchus xylophilus. The results showed that the content of NO increased significantly only 8?h after the invasion of B. xylophilus, while H(2)O(2) increased 12?h after invasion. NO donor SNP could promote and NO scavenger cPTIO could prevent the production of NO and H(2)O(2). The content of NO changed earlier than that of H(2)O(2). In addition, the symptoms appeared 9, 5 and 12?days, respectively, after the inoculation with B. xylophilus, SNP pre-treatment and cPTIO pre-treatment followed by B. xylophilus infection. After B. xylophilus infection, the content of NO in P. thunbergii changed fiercely more earlier than the appearance of external symptoms, which indicated that the content of NO was related with the appearance and the development of the symptoms. The treatment with L-NNA (NOS inhibitor) inhibited the content of NO significantly, whereas, Na(2)WO(4) (NR inhibitor) had no effect. The further analysis of NOS revealed that NO changed in consistent with cNOS activity. To sum up, NO, as the upstream signal molecule of H(2)O(2), was involved in the pine early response to the invasion of B. xylophilus and influenced the accumulation of the content of H(2)O(2). Moreover, NOS-like rather than NR was responsible for the endogenous NO generation, which was modulated by cNOS during the interaction between P. thunbergii and B. xylophilus. Key message NO is involved in early response of P. thunbergii to the invasion of B. xylophilus and NOS is the key enzyme responsible for NO generation in P. thunbergii.  相似文献   

15.
Nitric oxide (NO) has recently been identified as an important signaling molecule in plant immune response. The present study aims to investigate the signaling pathway that leads to NO production. Using the NO specific fluorescent dye DAF-2DA, we observed rapid production of NO in mung bean leaves after the addition of 10 mM hydrogen peroxide (H(2)O(2)). NO was probably produced by a NOS-like enzyme in plants, as the NO production was inhibited by l-NAME, a NOS inhibitor. The NOS-like activity in the total leaf protein preparation of mung bean (Phaseolus aureus) was elevated 8.3-fold after 10 mM H(2)O(2) treatment, as demonstrated using the chemiluminescence NOS assay. The NOS-like activity was BH(4) dependent: omitting BH(4) in the reaction mixture of NOS assay reduced the NOS activity by 76%. We also found that the H(2)O(2) induced NO production was mediated via calcium ion flux, as it was blocked in the presence of a calcium ion channel blocker, verapamil. Results from the present study identified H(2)O(2) as an upstream signal that leads to NO production in plants. H(2)O(2) and NO, besides acting as two independent signaling molecules in plant immune response, may interrelate to form an oxidative cell death (OCD) cycle.  相似文献   

16.
Nitric oxide (NO) shows cytotoxicity, and its reaction products with reactive oxygen species, such as peroxynitrite, are potentially more toxic. To examine the role of O2 in the NO toxicity, we have examined the proliferation of cultured human umbilical vein endothelial cells in the presence or absence of NO donor, ((Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-++ +ium-1,2-diolate) (DETA-NONOate) (100-500 microM), under normoxia (air), hypoxia (< 0.04% O2) or hyperoxia (88-94% O2). It was found that the dose dependency on NONOate was little affected by the ambient O2 concentration, showing no apparent synergism between the two treatments. We have also examined the effects of exogenous NO under normoxia and hyperoxia on the cellular activities of antioxidant enzymes involved in the H2O2 elimination, since many of them are known to be inhibited by NO or peroxynitrite in vitro. Under normoxia DETA-NONOate (500 microM) caused 25% decrease in catalase activity and 30% increases in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in 24h. Under hyperoxia NO caused about 25% decreases in activities of catalase, glutathione reductase and glucose-6-phosphate dehydrogenase. The H2O2 removal rate by NO-treated cells was computed on the mathematical model for the enzyme system. It was concluded that the cellular antioxidant function is little affected by NO under normoxia but that it is partially impaired when the cells are exposed to NO under hyperoxia.  相似文献   

17.
Reduction of NO and NO2-by whole cells of eight strains of denitrifying bacteria known to contain either heme cd1 or copper-containing nitrite reductases (NiRs) has been examined in the presence of H218O. All organisms containing heme cd1 NiRs exhibited relatively large extents of exchange between NO2- and H218O (39-100%), as monitored by the 18O content of product N2O. Organisms containing copper NiRs gave highly variable results, with Achromobacter cycloclastes and Pseudomonas aureofaciens exhibiting no 18O incorporation and Rhodopseudomonas sphaeroides and Alcaligenes entrophus exhibiting complete exchange between NO2- and H218O. Organisms containing heme cd1 NiRs exhibited significant but lower levels of exchange between NO and H218O than between NO2- and H218O, while organisms containing copper NiRs gave significantly higher amounts of 18O incorporation than observed for the heme cd1 organisms. These results demonstrate the existence of an NO-derived species capable of undergoing O-atom exchange with H218O during the reduction of NO. Trapping experiments with 15NO, 14N3-, and crude extracts of R. sphaeroides support the electrophilic nature of this intermediate and suggest its formulation as an enzyme nitrosyl, E-NO+, analogous to that observed during reduction of NO2-. The observation of lower levels of 18O incorporation with NO2- than with NO as substrate for A. cycloclastes and P. aureofaciens indicates that, for these organisms at least, a sequential pathway involving free NO as an intermediate is significantly less important than a direct pathway in which N2O is formed via reaction of two NO2- ions on a single enzyme.  相似文献   

18.
Hydrogen peroxide is involved in hamster sperm capacitation in vitro   总被引:4,自引:0,他引:4  
We have investigated the possibility that the generation of hydrogen peroxide (H2O2) by spermatozoa plays a physiological role during capacitation. Capacitation is defined as the incubation period required for fertilization in mammals. Capacitation culminates in an exocytotic event, the acrosome reaction (AR). Mammalian sperm generate H2O2 during aerobic incubation and do not contain catalase, the enzyme that promotes scavenging of H2O2. In the present work we show that added catalase inhibited the AR, while glucose oxidase (GO), an enzyme that generates H2O2, accelerated the onset of the AR. Direct addition of H2O2 also stimulated the AR; catalase inhibited both the stimulation by GO and by H2O2. The onset of the AR was always preceded by the appearance of hyperactivated motility. The stimulation of the AR by H2O2 was manifest 1-2 h after the addition of H2O2. Catalase added at 3 h of incubation was less effective in inhibiting the AR than catalase added at the beginning. Incubation of sperm with catalase prevented the induction of the AR by the membrane-perturbing lipid, lysophosphatidyl choline. Taken together, these results suggest that H2O2 produced by hamster sperm plays a significant role during capacitation, possibly in membrane reorganization to facilitate the fusion that takes place during exocytosis of the acrosomal contents.  相似文献   

19.
20.
To elucidate potential mechanisms of S-nitrosothiol formation in vivo, we studied nitrosation of GSH and albumin by nitric oxide ((*)NO), peroxynitrite, and (*)NO/O(2)(*)(-). In the presence of O(2), (*)NO yielded 20% of S-nitrosoglutathione (GSNO) at pH 7.5. Ascorbate and the spin trap 4-hydroxy-[2,2,4,4-tetramethyl-piperidine-1-oxyl] (TEMPOL) inhibited GSNO formation by 67%. Electron paramagnetic resonance spectroscopy with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) demonstrated intermediate formation of glutathionyl radicals, suggesting that GSNO formation by (*)NO/O(2) is predominantly mediated by (*)NO(2). Peroxynitrite-triggered GSNO formation (0.06% yield) was stimulated 10- and 2-fold by ascorbate and TEMPOL, respectively. Co-generation of (*)NO and O(2)(*)(-) at equal fluxes yielded less GSNO than (*)NO alone, but was 100-fold more efficient (8% yield) than peroxynitrite. Moreover, in contrast to the reaction of peroxynitrite, GSNO formation by (*)NO/O(2)(*)(-) was inhibited by ascorbate. Similar results were obtained with albumin instead of GSH. We propose that sulfhydryl compounds react with O(2)(*)(-) to initiate a chain reaction that forms radical intermediates which combine with (*)NO to yield GSNO. In RAW 264.7 macrophages, S-nitrosothiol formation by (*)NO/O(2) and (*)NO/O(2)(*)(-) occurred with relative efficiencies comparable to those in solution. Our results indicate that concerted generation of (*)NO and O(2)(*)(-) may essentially contribute to nitrosative stress in inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号