首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of geminate recombination for the diliganded species alpha 2CO beta 2 and alpha 2 beta 2CO of human hemoglobin were studied using flash photolysis. The unstable diliganded species were generated just before photolysis by chemical reduction in a continuous flow reactor from the more stable valency hybrids alpha 2CO beta 2+ and alpha 2+ beta 2CO, which could be prepared by high pressure liquid chromatography. Before the flash photolysis studies, the hybrids had been characterized by double-mixing stopped-flow kinetics experiments. At pH 6.0 in the presence of inositol hexaphosphate (IHP) both of the diliganded species show second order kinetics for overall addition of a third CO that is clearly characteristic of the T state (l' = 1-2 x 10(5) M-1 s-1), whereas at higher pH and in the absence of IHP they show combination rates characteristic of an R state. The kinetics of geminate recombination following photolysis of a bound CO, however, showed little dependence on pH and IHP concentration. This surprising observation is explained on the basis that the kinetics of geminate recombination of CO primarily depends on the tertiary structure of the ligand binding site, which apparently does not differ much between the R state and the liganded T state formed on adding IHP in this system. Since this explanation requires distinguishing different tertiary structures within a particular quaternary structure, it amounts to a contradiction to the two-state allosteric model.  相似文献   

2.
Studies of high spin ferrous and ferric derivatives led us to conclude that in the quaternary R structure the state of the hemes is similar to that in the free alpha and beta subunits, but in the T structure a tension acts on the hemes which tries to pull the iron and the proximal histidine further from the plane of the porphyrin. We have now studied the effect of inositol hexaphosphate (IHP) on the three low spin ferrous compounds of hemoglobin with O2, CO, and NO. IHP failed to switch the quaternary structure of carbonmonoxy- and oxyhemoglobin A to the T state, but merely caused a transition to an as yet undefined modification of the R structure. IHP is known to cause a switch to the T structure in hemoglobin Kansas. We have found that this switch induces red shifts of the visible alpha and beta absorption bands and the appearance of a shoulder on the red side of the alpha band; these changes are very weak in carbonmonoxy- and slightly stronger in oxyhemoglobin Kansas. As already noted by previous authors, addition of IHP to nitrosylhemoglobin A induces all the changes in uv absorption and CD spectra, sulfhydryl reactivities, and exchangeable proton resonances normally associated with the R leads to T transition, and is accompanied by large changes in the Soret and visible absorption bands. Experiments with nitrosyl hybrids show that these changes in absorption are caused predominantly by the hemes in the alpha subunits. In the accompanying paper Maxwell and Caughey (J. C. Maxwell and W. S. Caughey (1976), Biochemistry, following paper in this issue) report that the NO in nitrosylhemoglobin without IHP gives a single ir stretching frequency characteristic for six-coordinated nitrosyl hemes; addition of IHP causes the appearance of a second ir band, of intensity equal to that of the first, which is characteristic for five-coordinated nitrosyl hemes. Taken together, these results show that the R leads to T transition causes either a rupture or at least a very dramatic stretching of the bond from the iron to the heme-linked histidine, such that an equilibrium is set up between five- and six-coordinated hemes, biased toward five-coordinated hemes in the alpha and six-coordinated ones in the beta subunits. The reason why IHP can switch nitrosyl-, but not carbonmonoxy- or oxyhemoglobin A, from the R to the T structure is to be found in the weakening of the iron-histidine bond by the unpaired NO electron and by the very short Fe-NO bond length.  相似文献   

3.
Symmetrical FeZn hybrids of human HbA have been used to measure K(1)(alpha) and K(1)(beta), the dissociation constants for the binding of a single molecule of oxygen to unliganded HbA at an alpha subunit and at a beta subunit, respectively. The kinetic constants, l(1)'(alpha) and l(1)'(beta), for the combination of the first CO molecule to unliganded HbA at an alpha or a beta subunit, respectively, were also measured. Measurements were carried out between pH 6 and pH 8 in the presence and absence of inositol hexaphosphate (IHP). Both equilibrium constants exhibit a significant Bohr effect in the absence of IHP. The addition of IHP to a concentration of 0.1 mM increases both dissociation constants in a pH-dependent manner with the result that both Bohr effects are greatly reduced. These results require a negative thermodynamic linkage between the binding of a single oxygen at either an alpha or a beta subunit and the binding of IHP to the T quaternary structure of HbA. Although the beta hemes are relatively near the IHP binding site, a linkage between that site and the alpha hemes, such that the binding of a single oxygen molecule to the heme of one alpha subunit reduces the affinity of the T state for IHP, requires communication across the molecule. l(1)'(alpha) exhibits a very slight pH dependence, with a maximum variation of 20%, while l(1)'(beta) varies with pH three times as much. IHP has no effect on the pH dependence of either rate constant but reduces l(1)'(alpha) marginally, 20%, and l(1)'(beta) by 2-fold at all pH values.  相似文献   

4.
The properties of three HbA variants with different mutations at the beta102 position, betaN102Q, betaN102T, and betaN102A, have been examined. All three are inhibited in their ligand-linked transition from the low affinity T quaternary state to the high affinity Re quaternary state. In the presence of inositol hexaphosphate, IHP, none of them exhibits cooperativity in the binding of oxygen. This is consistent with the destabilization of the Re state as a result of the disruption of the hydrogen bond that normally forms between the beta102 asparagine residue and the alpha94 aspartate residue in the Re state. However, these three substitutions also alter the properties of the T state of the hemoglobin tetramer. In the presence of IHP, the first two substitutions result in large increases in the ligand affinities of the beta-subunits within the T state structure. The betaN102A variant, however, greatly reduces the pH dependencies of the affinities of the alpha and beta subunits, K1(alpha) and K1(beta), respectively, for the binding of the first oxygen molecule in the absence of IHP. In the presence of IHP, the T state of this variant is strikingly similar to that of HbA under the same conditions. For both hemoglobins, K1(alpha) and K1(beta) exhibit only small Bohr effects. In the absence of IHP, the affinities of the alpha and beta subunits of HbA for the first oxygen are increased, and both exhibit greatly increased Bohr effects. However, in contrast to the behavior of HbA, the ligand-binding properties of the T state tetramer of the betaN102A variant are little affected by the addition or removal of IHP. It appears that along with its effect on the stability of the liganded Re state, this mutation has an effect on the T state that mimics the effect of adding IHP to HbA. It inhibits the set of conformational changes, which are coupled to the K1 Bohr effects and normally accompany the binding of the first ligand to the HbA tetramer in the absence of organic phosphates.  相似文献   

5.
Proton NMR spectra for nitrosyl-, aquomet- and deoxy des-Arg(α141)-hemoglobin in H2O were studied at high pressures up to 1400 atm with attention to the exchangeable proton resonances due to the intra- and intersubunit hydrogen bonds. For aquomethemoglboin, the T state marker signal at 6.4 ppm is insensitive to pressure while the R state marker signal at 6.0 ppm exhibits progressive upfield shift upon pressurization. For nitrosylhemoglobin, the T state signals at 9.6 and 6.5 ppm decrease their intensities upon pressurization while the R state marker signal at 6.0ppm remains unchanged. Pressure-induced spectral changes for some of exchangeable resonances are also encountered for deoxy des-Arg(α141)-hemoglobin while the R and T quaternary structural indicators at 6.0 and 9.4 ppm are insensitive to pressure. These pressure-induced spectral changes for these hemoglobin derivatives are significantly distinguished from those associated with the R-T transition induced by addition of IHP or by variatiuon of pH. It is therefore concluded that pressure induces subtle quaternary structural changes in these hemoglobin derivatives without causing the R-T transition.  相似文献   

6.
The oxygen dissociation constants from Fe subunits in the half-ligated intermediate states of Fe-Co hybrid hemoglobins, alpha(Fe-O2)2 beta(Co)2 and alpha(Co)2 beta(Fe-O2)2, have been determined as functions of pH, temperature and inositol hexaphosphate. The oxygen dissociation rates from alpha(Fe-O2)2 beta(Co)2 are estimated to be more than 1300 s-1 for the deoxy quaternary state (T-state) and less than 3 s-1 for the oxy quaternary state (R-state) at 15 degrees C in 50 mM-Tris or Bis-Tris buffer containing 0.1 M-Cl-, while those of alpha(Co)2 beta(Fe-O2)2 are more than 180 s-1 and less than 5 s-1 for the T and R-states, respectively. The pH dependence of the oxygen dissociation rate from Fe subunits is large enough to be accounted for by the R-T transition, and implies that those half-ligated intermediate hybrids mainly exist in the R-state at pH 8.8, and in the T-state at pH 6.6, while other studies indicated that the half-ligated hybrids are essentially in the R-state at pH 7. Large activation energies of the oxygen dissociation process of 19 to 31 kcal/mol determined from the temperature dependence suggest that the process is entropy-driven.  相似文献   

7.
L W Fung  C Ho 《Biochemistry》1975,14(11):2526-2535
Proton nuclear magnetic resonance spectra of human hemoglobins in water reveal several exchangeable protons which are indicators of the quaternary structures of both the liganded and unliganded molecules. A comparison of the spectra of normal human adult hemoglobin with those of mutant hemoglobins Chesapeake (FG4alpha92 Arg yields Leu), Titusville (G1alpha94 Asp yields Asn), M Milwaukee (E11beta67 Val yields Glu), Malmo (FG4beta97 His yields Gln), Kempsey (G1beta99 Asp yields Asn), Yakima (G1beta99 Asp yields His), and New York (G15beta113 Val yields Glu), as well as with those of chemically modified hemoglobins Des-Arg(alpha141), Des-His(beta146), NES (on Cys-beta93)-Des-Arg(alpha141), and spin-labeled hemoglobin [Cys-beta93 reacted with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide], suggests that the proton in the important hydrogen bond between the tyrosine at C7alpha42 and the aspartic acid at G1beta99, which anchors the alpha1beta2 subunits of deoxyhemoglobin (a characteristic feature of the deoxy quaternary structure), is responsible for the resonance at -9.4 ppm from water at 27 degrees. Another exchangeable proton resonance which occurs at -6.4 ppm from H2O is a spectroscopic indicator of the deoxy structure. A resonance at -5.8 ppm from H2O, which is an indicator of the oxy conformation, is believed to originate from the hydrogen bond between the aspartic acid at G1alpha94 and the asparagine at G4beta102 in the alpha1beta2 subunit interface (a characteristic feature of the oxy quaternary structure). In the spectrum of methemoglobin at pH 6.2 both the -6.4- and the -5.8ppm resonances are present but not the -9.4-ppm resonance. Upon the addition of inositol hexaphosphate to methemoglobin at pH 6.2, the usual resonance at -9.4 ppm is shifted to -10 ppm and the resonance at 6.4 ppm is not observed. In the spectrum of methemoglobin at pH greater than or equal to 7.6 with or without inositol hexaphosphate, the resonance at -5.8 ppm is present, but not those at -10 and -6.4 ppm, suggesting that methemoglobin at high pH has an oxy-like structure. Two resonances (at -8.2 and -7.3 ppm) which remain invariant in the two quaternary structures could come from exchangeable protons in the alpha1beta1 subunit interface and/or other exchangeable protons in the hemoglobin molecule which undergo no conformational changes during the oxygenation process. These exchangeable proton resonances serve as excellent spectroscopic probes of the quaternary structures of the subunit interfaces in studies of the molecular mechanism of cooperative ligand binding to hemoglobin.  相似文献   

8.
Nagatomo S  Nagai M  Shibayama N  Kitagawa T 《Biochemistry》2002,41(31):10010-10020
The alpha1-beta2 subunit contacts in the half-ligated hemoglobin A (Hb A) have been explored with ultraviolet resonance Raman (UVRR) spectroscopy using the Ni-Fe hybrid Hb under various solution conditions. Our previous studies demonstrated that Trpbeta37, Tyralpha42, and Tyralpha140 are mainly responsible for UVRR spectral differences between the complete T (deoxyHb A) and R (COHb A) structures [Nagai, M., Wajcman, H., Lahary, A., Nakatsukasa, T., Nagatomo, S., and Kitagawa, T. (1999) Biochemistry, 38, 1243-1251]. On the basis of it, the UVRR spectra observed for the half-ligated alpha(Ni)beta(CO) and alpha(CO)beta(Ni) at pH 6.7 in the presence of IHP indicated the adoption of the complete T structure similar to alpha(Ni)beta(deoxy) and alpha(deoxy)beta(Ni). The extent of the quaternary structural changes upon ligand binding depends on pH and IHP, but their characters are qualitatively the same. For alpha(Ni)beta(Fe), it is not until pH 8.7 in the absence of IHP that the Tyr bands are changed by ligand binding. The change of Tyr residues is induced by binding of CO, but not of NO, to the alpha heme, while it was similarly induced by binding of CO and NO to the beta heme. The Trp bands are changed toward R-like similarly for alpha(Ni)beta(CO) and alpha(CO)beta(Ni), indicating that the structural changes of Trp residues are scarcely different between CO binding to either the alpha or beta heme. The ligand induced quaternary structural changes of Tyr and Trp residues did not take place in a concerted way and were different between alpha(Ni)beta(CO) and alpha(CO)beta(Ni). These observations directly indicate that the phenomenon occurring at the alpha1-beta2 interface is different between the ligand binding to the alpha and beta hemes and is greatly influenced by IHP. A plausible mechanism of the intersubunit communication upon binding of a ligand to the alpha or beta subunit to the other subunit and its difference between NO and CO as a ligand are discussed.  相似文献   

9.
K Ishimori  I Morishima 《Biochemistry》1986,25(17):4892-4898
The effect of heme modification on the tertiary and quaternary structures of hemoglobins was examined by utilizing the NMR spectra of the reconstituted [mesohemoglobin (mesoHb), deuterohemoglobin (deuteroHb)] and hybrid heme (meso-proto, deutero-proto) hemoglobins (Hbs). The heme peripheral modification resulted in the preferential downfield shift of the proximal histidine N1H signal for the beta subunit, indicating nonequivalence of the structural change induced by the heme modification in the alpha and beta subunits of Hb. In the reconstituted and hybrid heme Hbs, the exchangeable proton resonances due to the intra- and intersubunit hydrogen bonds, which have been used as the oxy and deoxy quaternary structural probes, were shifted by 0.2-0.3 ppm from that of native Hb upon the beta-heme substitution. This suggests that, in the fully deoxygenated form, the quaternary structure of the reconstituted Hbs is in an "imperfect" T state in which the hydrogen bonds located at the subunit interface are slightly distorted by the conformational change of the beta subunit. Moreover, the two heme orientations are found in the alpha subunit of deuteroHb, but not in the beta subunit of deuteroHb, and in both the alpha and beta subunits of mesoHb. The tertiary and quaternary structural changes in the Hb molecule induced by the heme peripheral modification were also discussed in relation to their functional properties.  相似文献   

10.
The bimolecular and geminate CO recombination kinetics have been measured for hemoglobin (Hb) with over 90% of the ligand binding sites occupied by NO. Since Hb(NO)4 with inositol hexaphosphate (IHP) at pH below 7 is thought to take on the low affinity (deoxy) conformation, the goal of the experiments was to determine whether the species IHPHb-(NO)3(CO) also exists in this quaternary structure, which would allow ligand binding studies to tetramers in the deoxy conformation. For samples at pH 6.6 in the presence of IHP, the bimolecular kinetics show only a slow phase with rate 7 x 10(4) M-1 s-1, characteristic of CO binding to deoxy Hb, indicating that the triply NO tetramers are in the deoxy conformation. Unlike Hb(CO)4, the fraction recombination occurring during the geminate phase is low (< 1%) in aqueous solutions, suggesting that the IHPHb(NO)3(CO) hybrid is also essentially in the deoxy conformation. By mixing stock solutions of HbCO and HbNO, the initial exchange of dimers produces asymmetric (alpha NO beta NO/alpha CO beta CO) hybrids. At low pH in the presence of IHP, this hybrid also displays a high bimolecular quantum yield and a large fraction of slow (deoxy-like) CO recombination; the slow bimolecular kinetics show components of equal amplitude with rates 7 and 20 x 10(4) M-1 s-1, probably reflecting the differences in the alpha and beta chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Mixtures of nitric oxide and hemoglobin were prepared in a rapid freeze apparatus and analyzed by EPR spectroscopy. Spectra from samples at various degrees of saturation showed that the two subunits bound NO at equal rates. Identical results were observed in 0.1 M phosphate at pH 6.5 and 0.1 M 2,2'-bis(hydroxymethyl)-2,2',2'-nitrilotriethanol, 0.1 M NaCl at pH 7.0, both in the presence and absence of inositol hexaphosphate at either buffer condition. At subsaturating levels of NO (less than 60%), or at all levels of saturation in the presence of inositol hexaphosphate, it was found that the EPR spectrum of nitrosylhemoglobin varied with the length of time before freezing. This change was characterized by the development of a hyperfine structure at g = 2.01 which appeared with a half-time of approximately 0.4 s. Maxwell and Caughey (Maxwell, J. C., and Caughey, W. S. (1976) Biochemistry 15, 388-395) have attributed this three-line EPR hyperfine structure to the formation of a pentacoordinate ferroheme-NO complex. Corresponding slow changes were observed in the visible absorption spectrum following the binding of low levels of NO to deoxyhemoglobin or inositol hexaphosphate to fully saturated nitrosylhemoglobin. Thus it appears that NO binding to the alpha and beta subunits of deoxyhemoglobin takes place at equal rates and, under conditions favoring the T quaternary state (low saturation, presence of inositol hexaphosphate), a further slow structural change takes place, resulting in the cleavage of the iron--proximal histidine bond.  相似文献   

12.
In order to clarify the role of salt-bridges in hemoglobin, the oxygen equilibrium curves and electron paramagnetic resonance (EPR) spectra of cobalt-iron hybrid hemoglobins were determined. The EPR spectra of deoxy alpha(Co)2 beta(Fe)2 could be interpreted as a mixture of two distinct paramagnetic species: one showed a maximum of the first derivative spectrum at g = 2.39 and the other at g = 2.33. The oxygen equilibrium curves of the hybrid indicated that the former is assignable to the T structure and the latter to the R structure. The cooperativity of oxygen binding of alpha(Co)2 beta(Fe)2 exhibited a maximum at g = 2.33, which is characteristic of the R structure, regardless of the pH. Addition of inositol hexaphosphate (IHP) to des-Arg alpha(Co)2 beta(Fe)2 restored the cooperativity of oxygen binding, which implies that the deoxygenated form of des-Arg alpha(Co)2 beta(Fe)2 is converted to the T structure upon addition of IHP. However, the EPR signal at g = 2.39 was not restored upon conversion to the T structure by addition of IHP. It is therefore concluded that the EPR spectrum of the deoxy alpha(Co) subunit depends both on the quaternary structure and on the localized strain at the heme.  相似文献   

13.
Ni(II)-Fe(II) hybrid hemoglobins, alpha(Fe)2 beta(Ni)2 and alpha(Ni)2 beta(Fe)2 have been characterized by proton nuclear magnetic resonance with Ni(II) protoporphyrin IX (Ni-PP) incorporated in apoprotein, which serves as a permanent deoxyheme. alpha(Fe)2 beta(Ni)2, alpha(Ni)2 beta(Fe)2, and NiHb commonly show exchangeable proton resonances at 11 and 14 ppm, due to hydrogen-bonded protons in a deoxy-like structure. Upon binding of carbon monoxide (CO) to alpha(Fe)2 beta(Ni)2, these resonances disappear at pH 6.5 to pH 8.5. On the other hand, the complementary hybrid alpha(Ni)2 beta(Fe-CO)2 showed the 11 and 14 ppm resonances at low pH. Upon raising pH, the intensities of both resonances are reduced, although these changes are not synchronized. Electronic absorption spectra and hyperfine-shifted proton resonances indicate that the ligation of CO in the beta(Fe) subunits induced changes in the coordination and spin states of Ni-PP in the alpha subunits. In a deoxy-like structure, the coordination of Ni-PP in the alpha subunits is predominantly in a low-spin (S = 0) four-coordination state, whereas in an oxy-like structure the contribution of a high-spin (S = 1) five-coordination state markedly increased. Ni-PP in the beta subunits always takes a high-spin five-coordination state regardless of solution conditions and the state of ligation in the partner alpha(Fe) subunits. In the beta(Ni) subunits, a significant downfield shift of the proximal histidyl N delta H resonance and a change in the absorption spectrum of Ni-PP were detected, upon changing the quaternary structure of the hybrid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
I Morishima  M Hara  K Ishimori 《Biochemistry》1986,25(22):7243-7250
To gain further insight into the quaternary structures of methemoglobin derivatives in the low-spin state, the interaction of fully liganded valency hybrid human hemoglobins with IHP was studied by proton NMR spectroscopy. Upon addition of IHP to (alpha CO beta + N3-)2, the same resonances as the previously reported IHP-induced NMR peaks for azidomethemoglobin (alpha + N3-beta +N3-)2 appeared, whereas the binding of IHP did not significantly affect the NMR spectra for (alpha + N3-beta CO)2. The binding of IHP also brought about more pronounced spectral changes for (alpha CO beta + Im)2 and (alpha CO beta + H2O)2 than for (alpha + Im beta CO)2 and (alpha + H2O beta CO)2. Therefore, the IHP-induced NMR peaks for azidomethemoglobin are attributed to the beta heme methyl group. Such IHP-induced beta heme methyl resonances were also observed for (alpha NO beta + N3-)2, which undergoes quaternary structural change, analogously to the R-T transition by the binding of IHP. From the above results, it was suggested that the IHP-induced heme methyl resonances for azidomethemoglobin and (alpha CO beta +N3-)2 may also be associated with the quaternary structure of these Hbs, implying the presence of the IHP-induced "T-like" state in low-spin metHb A.  相似文献   

15.
The dissociation of NO from nitrosylhemoglobin   总被引:1,自引:0,他引:1  
The reaction between nitrosylhemoglobin and an excess of deoxymyoglobin has been used to study the kinetics of ligand dissociation from Hb4(NO)4 and Hb4(no)1 species. The kinetics of the dissociation of the first NO molecule from Hb4(no)4 was studied by the ligand replacement method. The results indicate that: (a) the ligand dissociation reaction in Hb4(NO)4 is a cooperative process. This is consistent with the results of Moore and Gibson (Moore, E.G., and Gibson, Q.H. (1977) J. Biol. Chem. 251, 2788-2794). (b) alpha and beta chains in the T state formed by adding IHP to Hb4(NO)4 show kinetic heterogeneity. (c) A similar kinetic heterogeneity is shown by alpha and beta chains in the species Hb4NO in the absence of IHP.(d) The value for the NO dissociation rate constant calculated from the slow phases observed in (b) and (c) is similar to that estimated for the R state. These results suggest that the R to T transition brought about with or without inositol hexaphosphate changes the ligand affinity of one type of the chains much more than of the other. On the basis of IR and EPR studies, it is suggested that alpha chains undergo larger functional changes in R to T transition (or vice versa) in nitrosylhemoglobin. The kinetic parameters for HbNO are compared with those of HbO2 and HbCO and the implications of the results for the reaction mechanism are discussed.  相似文献   

16.
The equilibria of oxygen binding to and kinetics of CO combination with the symmetrical iron-zinc hybrids of a series of variants of human adult hemoglobin A have been measured at pH 7 in the presence of inositol hexaphosphate (IHP). In addition, the kinetics of CO combination have also been measured in the absence of IHP. The hybrids have the heme groups of either the alpha or the beta subunits replaced by zinc protoporphyrin IX, which is unable to bind a ligand and is a good model for permanently deoxygenated heme. The variants examined involve residues located in the alpha1beta2 interface of the hemoglobin tetramer. Alterations of residues located in the hinge region of the interface are found to affect the properties of both the alpha and the beta subunits of the protein. In contrast, alterations of residues in the switch region of the interface have substantial effects only on the mutant subunit and are poorly communicated to the normal partner subunit. When the logarithms of the rate constants for the combination of the first CO molecule with a single subunit in the presence of IHP are analyzed as functions of the logarithms of the dissociation equilibrium constants for the binding of the first oxygen under the same conditions, a linear relationship is found. The relationship is somewhat different for the alpha and beta subunits, consistent with the well-known differences in the geometries of their ligand binding sites.  相似文献   

17.
The alpha and beta subunits of human follitropin were isolated in a high state of purity. The tryptophan fluorescence of the native hormone and the isolated beta subunit are different. The N-terminus of the alpha and beta subunits was identified as valine and aspartic acid respectively. While recombination of the isolated alpha and beta subunits restores the electrophoretic mobility of the intact hormone, its receptor binding activity cannot be fully regenerated. Substitution of the human follitropin alpha by an ovine lutropin alpha subunit, to form a recombinant with the follitropin beta subunit, generates a complex with 2-3 receptor binding activity of the native human follitropin and the same activity as ovine follitropin. Acylation of the intact hormone does not disrupt the quaternary structure but leads to complete inactivation. Acylation studies with the subunits suggests the crucial role of the epsilon-amino groups of the alpha subunit in determining biological activity.  相似文献   

18.
The subunits of phosphorylase kinase are separated and isolated in high yield by gel filtration chromatography in pH 3.3 phosphate buffer containing 8 M urea. Three protein peaks are obtained: the alpha and beta subunits coelute in the first, whereas the gamma and delta subunits are separate peaks. Upon dilution of the denaturant, catalytic activity reappears, associated only with the gamma subunit. As has been previously observed (Kee, S.M., and Graves, D.J. (1986) J. Biol. Chem. 261, 4732-4737), addition of calmodulin dramatically stimulates the reactivation of gamma. Inclusion of increasing amounts of the alpha/beta subunit mixture in the renaturation progressively decreases the activity of the renatured gamma or gamma-calmodulin. This inhibition by alpha/beta is likely due to specific interactions with the gamma subunit because the inhibition is less at pH 8.2 than at pH 6.8 and less when equivalent amounts of phosphorylated alpha/beta subunits are used (both alkaline pH and phosphorylation are known to stimulate the activity of the holoenzyme). These results suggest that the role of either the alpha or beta subunits, or perhaps both, in the nonactivated (alpha 2 beta 2 gamma 2 delta 2)2 complex of phosphorylase kinase is to suppress the activity of the gamma subunit and that activation of the enzyme, by phosphorylation for instance, is due to deinhibition caused by release of this quaternary constraint by alpha and/or beta upon gamma.  相似文献   

19.
The kinetics of the change from the carboxy to the deoxy conformation of the mutated hemoglobins mentioned in the title and of normal human adult hemoglobin were determined from measurements of light absorption changes occurring up to 50 microseconds after nanosecond-laser photodissociation of the corresponding CO complexes. The spectral evolution of the mutated hemoglobins was found to be similar in its main features to that of normal hemoglobin. The kinetics could be decomposed into two phases with rates 1.1-1.8 x 10(6) s-1 and 0.17-0.34 x 10(6) s-1 (except Hb St. Mandé which displayed only the faster phase). Study of the mutated subunits of HbJ Mexico (alpha subunit) and Hb H?tel Dieu (beta subunit) showed that they convert exponentially to the stable deoxy state after photodeligation at the same rates as the corresponding subunits of normal Hb: 1.1 x 10(6) s-1 (alpha) and 0.3 x 10(6) s-1 (beta). The results indicate that there is no direct correlation between the kinetics of spectral relaxation in the time range studied and the oxygenation properties for these hemoglobins. However, there is some indication that the kinetics are dependent upon the region of mutation.  相似文献   

20.
31P-NMR of trimethylphosphine binding to the ferrous chains of a ([alpha Fe(II), beta Mn(II)]hemoglobin hybrid is employed to investigate partially liganded species. This study shows that at low pH (6.5), in the presence of inositol hexaphosphate, the resonance at 23.2 ppm (from H3PO4) is due to phosphine bonding to alpha-chains in the T quaternary state. At elevated pH (7.6), phosphine binding to the alpha-chains produces a resonance at 24.8 ppm which is associated with a T-to-R conversion. These findings are discussed in relation with our previous results on direct observation of intermediate ligation states of hemoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号