首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined lipase deficiency (cld) is a recessively inherited disorder in mice associated with a deficiency of LPL and hepatic lipase (HL) activity. LPL is synthesized in cld tissues but is retained in the endoplasmic reticulum (ER), whereas mouse HL (mHL) is secreted but inactive. In this study we investigated the effect of cld on the secretion of human HL (hHL) protein mass and activity. Differentiated liver cell lines were derived from cld mice and their normal heterozygous (het) littermates by transformation of hepatocytes with SV40 large T antigen. After transient transfection with lipase expression constructs, secretion of hLPL activity from cld cells was only 12% of that from het cells. In contrast, the rate of secretion of hHL activity and protein mass per unit of expressed hHL mRNA was identical for the two cell lines. An intermediate effect was observed for mHL, with a 46% reduction in secretion of activity from cld cells. The ER glucosidase inhibitor, castanospermine, decreased secretion of both hLPL and hHL from het cells by approximately 70%, but by only approximately 45% from cld cells. This is consistent with data suggesting that cld may result from a reduced concentration of the ER chaperone calnexin. In conclusion, our results demonstrate a differential effect of cld on hLPL, mHL, and hHL secretion, suggesting differential requirements for activation and exit of the enzymes from the ER.  相似文献   

2.
Combined lipase deficiency (cld) is a genetic abnormality in mice resulting in the production of enzymatically inactive lipoprotein lipase (LPL). After suckling, these mice have markedly elevated levels of circulating triglyceride. An alteration of LPL gene expression in cld mice may affect the amount and/or the distribution of LPL mRNA in different cell types. Therefore, we performed in situ hybridization for LPL mRNA in tissues from normal and cld pups and adult mice using an antisense 35S-labeled cRNA probe. LPL mRNA had the same pattern of distribution in both cld and normal newborn mice; the probe hybridized strongly to pyramidal neurons of the hippocampus, heart myocytes, and hepatocytes. Despite the lack of noticeable fat stores, LPL mRNA was found in the dermal layer of the skin of cld mice and normal littermates. In adult mice, the cRNA probe for LPL hybridized to the hippocampus, to the heart, and to localized areas of the kidney. We conclude that despite great variation in plasma triglyceride levels, LPL gene is similarly expressed in animals with or without LPL activity.  相似文献   

3.
Combined lipase deficiency (cld) is a recessive mutation which causes a severe deficiency of lipoprotein lipase and hepatic lipase activities and lethal hypertriacylglycerolemia within 3 days in newborn mice. The effect of this genetic defect on lipoprotein lipase was studied in primary cultures of brown adipocytes derived from tissue of newborn mice. Cells cultured from cld/cld mice replicated, accumulated triacylglycerol, and differentiated into adipocytes at normal rates. Lipoprotein lipase activity in unaffected cells was detectable on Day 0 of confluence and increased to 1.3 units/mg DNA by Day 6, while that in cld/cld cells was less than 4% of that in unaffected cells on Days 4-6. Unaffected cells released 1.2% of their lipase activity in 30 min in the absence of heparin, and 11% in 10 min in the presence of heparin, whereas cld/cld cells released no lipase activity. cld/cld cells contained 2-3 times as much lipoprotein lipase protein as unaffected cells, and released no lipase protein to the medium. Immunofluorescent lipoprotein lipase was not detectable in unaffected adipocytes unless lipase secretion was blocked with monesin, causing retention of the lipase in Golgi. cld/cld adipocytes, in contrast, contained immunofluorescent lipoprotein lipase distributed in a diffuse reticular pattern, indicating retention of lipase in endoplasmic reticulum. Lipoprotein lipase immunoprecipitated from cells incubated 1-3 h with [35S]methionine was digested with or without endoglycosidase H (endo H) or F, and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Lipoprotein lipase in unaffected cells (Mr = 56,000-58,000) consisted of three glycosylated forms, of which the most prevalent was endo H-resistant, the next was totally endo H-sensitive, and the least was partially endo H-sensitive. In contrast, lipoprotein lipase in cld/cld cells (Mr = 56,000) consisted of a single, totally endo H-sensitive form. Lipoprotein lipase in both groups of cells contained two oligosaccharide chains. Chromatography studies with heparin-Sepharose indicated that at least some of the lipoprotein lipase in cld/cld cells was dimerized. The findings demonstrate that brown adipocytes cultured from cld/cld mice synthesize lipoprotein lipase with two high mannose oligosaccharide chains, but it is inactive and retained in endoplasmic reticulum. Whether the cld mutation affects primarily processing of oligosaccharide chains of lipoprotein lipase in endoplasmic reticulum, transport of the lipase from the reticulum, or some other process, is to be resolved.  相似文献   

4.
The mutations cld (combined lipase deficiency) and lec23 disrupt in a similar manner the expression of lipoprotein lipase (LPL). Whereas cld affects an unknown gene, lec23 abolishes the activity of alpha-glucosidase I, an enzyme essential for proper folding and assembly of nascent glycoproteins. The hypothesis that cld, like lec23, affects the folding/assembly of nascent LPL was confirmed by showing that in cell lines homozygous for these mutations (Cld and Lec23, respectively), the majority of LPL was inactive, displayed heterogeneous aggregation, and had a decreased affinity for heparin. While inactive LPL was retained in the ER, a small amount of LPL that had attained a native conformation was transported through the Golgi and secreted. Thus, Cld and Lec23 cells recognized and retained the majority of LPL as misfolded, maintaining the standard of quality control. Examination of candidate factors affecting protein maturation, such as glucose addition and trimming, proteins involved in lectin chaperone cycling, and other abundant ER chaperones, revealed that calnexin levels were dramatically reduced in livers from cld/cld mice; this finding was also confirmed in Cld cells.We conclude that cld may affect components in the ER, such as calnexin, that play a role in protein maturation. Whether the reduced calnexin levels per se contribute to the LPL deficiency awaits confirmation.  相似文献   

5.
Combined lipase deficiency, cld, is a recessive mutation within the T/t complex of mouse chromosome 17. Mice homozygous for this defect display severe functional deficiencies of lipoprotein lipase and the related hepatic lipase. They develop massive hyperchylomicronemia and die within 3 days when allowed to suckle. Heart, diaphragm muscle, and brown adipose tissue of 1-day-old cld/cld and unaffected mice incorporated in vivo [35S]methionine into a protein that could be immunoprecipitated by antilipoprotein lipase serum. The immunoprecipitated protein in all tissues had the same Mr as bovine lipoprotein lipase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proportion of radioactivity in the lipoprotein lipase band to that in total protein was 0.02% in tissues of cld/cld mice and 0.01% in tissues of unaffected mice. There was 2-6 times more lipoprotein lipase-like protein (determined by immunoassay) in tissues of defective mice than in those of unaffected mice. These findings indicate that the cld mutation did not cause deletion of the structural gene for lipoprotein lipase. Lipoprotein lipase activity in heart, diaphragm muscle, brown adipose tissue, and lung of cld/cld mice was less than 5% of that in tissues of unaffected mice. This low activity could be inhibited more than 85% by antilipoprotein lipase serum, but not by nonimmune serum. It is concluded that tissues in cld/cld mice synthesize a lipoprotein lipase-like protein which has subnormal catalytic activity.  相似文献   

6.
The expression of the gene for lipoprotein lipase (LPL) was studied in brown adipose tissue and the liver of combined lipase deficient (cld/cld) and unaffected mice. The mRNA specific for LPL was detected in both animals. Although the size of LPL mRNA in cld mice was similar to that of unaffected mice, the mRNA concentration in affected animals was higher than in unaffected animals. We also studied the LPL gene mutation in cld mice by Southern blot analysis. No restriction fragment length polymorphisms were observed after digestion with 16 endonucleases. These data indicate that there is no gene insertion or deletion, but do not exclude the possibility of point mutation in the LPL structural gene. However, the present results agree with the hypothesis that the genetic defect in cld is not due to a mutation in the LPL structural gene, but instead involves the defective post-translational processing of LPL or defective cellular function affecting transport and secretion of this enzyme group.  相似文献   

7.
An autosomal recessive mutation, termed fatty liver dystrophy (fld), can be identified in neonatal mice by their enlarged and fatty liver (Sweet, H. O., Birkenmeier, E. H., and Davisson, M. T. (1988) Mouse News Letter 81, 69). We have examined the underlying metabolic abnormalities in fld/fld mice from postnatal days 3-40. Serum and hepatic triglyceride levels were elevated 5-fold in suckling fld/fld mice compared to their +/? littermates but abruptly resolved at the suckling/weaning transition. Blot hybridization analysis of liver and intestinal RNAs revealed a liver-specific increase in apolipoprotein (apo) A-IV and C-II mRNA concentrations (100- and 6-fold, respectively) that was limited to the suckling and early weaning stages in fld/fld mice. Resolution of these differences during the weaning period could not be delayed by prolonging suckling to the 20th postnatal day nor could the mutant phenotype be elicited in young adult animals with a high fat diet. Lipoprotein lipase (LPL) activity was reduced 16-fold in the white adipose tissue of fld/fld mice until the onset of weaning. Heart activity was decreased less than 2-fold, but there were no deficits in brown adipose tissue or liver. Hepatic lipase (HL) mRNA levels and activity were significantly reduced in fld/fld livers and sera, respectively, during the suckling period. Mapping studies show the fld locus to be distinct from loci encoding LPL, HL, and apoA-IV, and those responsible for the combined lipase deficiencies in cld/cld and W/Wv mice. These data suggest that the fld mutation is associated with developmentally programmed tissue-specific defects in the neonatal expression of LPL and HL activities and provide evidence for a new regulatory locus which affects these lipase activities. This mutation could serve as a useful model for (i) analyzing the homeostatic mechanisms controlling lipid metabolism in newborn mice and (ii) understanding and treating certain inborn errors in human triglyceride metabolism.  相似文献   

8.
Both LPL and HL are synthesized in parenchymal cells, are secreted, and bind to endothelial cells. To learn where endothelial lipase (EL) is synthesized in adult animals, the localization of EL in mouse and rat liver was studied by immunohistochemical analysis. Furthermore, to test whether EL could play a role in atherogenesis, the expression of EL in the aorta and liver of apolipoprotein E knockout (EKO) mice was determined. EL in both mouse and rat liver was colocalized with vascular endothelial cells but not with hepatocytes. In contrast, HL was present in both hepatocytes and endothelial cells. By in situ hybridization, EL mRNA was present only in endothelial cells in liver sections. EL was also present at low levels in aorta of normal mice. We fed EKO mice and wild-type mice a variety of diets and determined EL expression in liver and aorta. EKO mice showed significant expression of EL in aorta. EL expression was lower in the liver of EKO mice than in normal mice. Cholesterol feeding decreased EL in liver of both types of mice. In the aorta, EL was higher in EKO than in wild-type mice, and cholesterol feeding had no effect. Together, these data suggest that EL may be upregulated at the site of atherosclerotic lesions and thus could supply lipids to the area.  相似文献   

9.
Appraisal of hepatic lipase and lipoprotein lipase activities in mice   总被引:1,自引:0,他引:1  
A variety of methods are currently used to analyze HL and LPL activities in mice. In search of a simple methodology, we analyzed mouse preheparin and postheparin plasma LPL and HL activities using specific polyclonal antibodies raised in rabbit against rat HL (anti-HL) and in goat against rat LPL (anti-LPL). As an alternative, we analyzed HL activity in the presence of 1 M NaCl, a condition known to inhibit LPL activity in humans. The assays were validated using plasma samples from wild-type and HL-deficient C57BL/6 mice. We now show that the use of 1 M NaCl for the inhibition of plasma LPL activity in mice may generate incorrect measurements of both LPL and HL activities. Our data indicate that HL can be measured directly, without heparin injection, in preheparin plasma, because virtually all HL is present in an unbound form circulating in plasma. In contrast, measurable LPL activity is present only in postheparin plasma. Both HL and LPL can be measured using the same assay conditions (low salt and the presence of apolipoprotein C-II as an LPL activator). Total lipase activity in postheparin plasma minus preheparin HL activity reflects LPL activity. Specific antibodies are not required.  相似文献   

10.
Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Lipase maturation factor 1 (Lmf1) is an endoplasmic reticulum (ER) membrane protein involved in the posttranslational folding and/or assembly of lipoprotein lipase (LPL) and hepatic lipase (HL) into active enzymes. Mutations in Lmf1 are associated with diminished LPL and HL activities ("combined lipase deficiency") and result in severe hypertriglyceridemia in mice as well as in human subjects. Here, we investigate whether endothelial lipase (EL) also requires Lmf1 to attain enzymatic activity. We demonstrate that cells harboring a (cld) loss-of-function mutation in the Lmf1 gene are unable to generate active EL, but they regain this capacity after reconstitution with the Lmf1 wild type. Furthermore, we show that cellular EL copurifies with Lmf1, indicating their physical interaction in the ER. Finally, we determined that post-heparin phospholipase activity in a patient with the LMF1(W464X) mutation is reduced by more than 95% compared with that in controls. Thus, our study indicates that EL is critically dependent on Lmf1 for its maturation in the ER and demonstrates that Lmf1 is a required factor for all three vascular lipases, LPL, HL, and EL.  相似文献   

12.
Endothelial lipase: a new lipase on the block   总被引:8,自引:0,他引:8  
Endothelial lipase (EL) is a newly described member of the triglyceride lipase gene family. It has a considerable molecular homology with lipoprotein lipase (LPL) (44%) and hepatic lipase (HL) (41%). Unlike LPL and HL, this enzyme is synthesized by endothelial cells and functions at the site where it is synthesized. Furthermore, its tissue distribution is different from that of LPL and HL. As a lipase, EL has primarily phospholipase A1 activity. Animals that overexpress EL showed reduced HDL cholesterol levels. Conversely, animals that are deficient in EL showed a marked elevation in HDL cholesterol levels, suggesting that it plays a physiologic role in HDL metabolism. Unlike LPL and HL, EL is located in the vascular endothelial cells and its expression is highly regulated by cytokines and physical forces, suggesting that it may play a role in the development of atherosclerosis. However, there is only a limited amount of information available about this enzyme. Some of our unpublished data in addition to previously published data support the possibility that the enzyme plays a role in the formation of atherosclerotic lesion.  相似文献   

13.
Lipoprotein lipase (LPL) provides tissues with fatty acids, which have complex effects on glucose utilization and insulin secretion. To determine if LPL has direct effects on glucose metabolism, we studied mice with heterozygous LPL deficiency (LPL+/-). LPL+/- mice had mean fasting glucose values that were up to 39 mg/dl lower than LPL+/+ littermates. Despite having lower glucose levels, LPL+/- mice had fasting insulin levels that were twice those of +/+ mice. Hyperinsulinemic clamp experiments showed no effect of genotype on basal or insulin-stimulated glucose utilization. LPL message was detected in mouse islets, INS-1 cells (a rat insulinoma cell line), and human islets. LPL enzyme activity was detected in the media from both mouse and human islets incubated in vitro. In mice, +/- islets expressed half the enzyme activity of +/+ islets. Islets isolated from +/+ mice secreted less insulin in vitro than +/- and -/- islets, suggesting that LPL suppresses insulin secretion. To test this notion directly, LPL enzyme activity was manipulated in INS-1 cells. INS-1 cells treated with an adeno-associated virus expressing human LPL had more LPL enzyme activity and secreted less insulin than adeno-associated virus-beta-galactosidase-treated cells. INS-1 cells transfected with an antisense LPL oligonucleotide had less LPL enzyme activity and secreted more insulin than cells transfected with a control oligonucleotide. These data suggest that islet LPL is a novel regulator of insulin secretion. They further suggest that genetically determined levels of LPL play a role in establishing glucose levels in mice.  相似文献   

14.
Chimeric molecules between human lipoprotein lipase (LPL) and rat hepatic lipase (HL) were used to identify structural elements responsible for functional differences. Based on the close sequence homology with pancreatic lipase, both LPL and HL are believed to have a two-domain structure composed of an amino-terminal (NH2-terminal) domain containing the catalytic Ser-His-Asp triad and a smaller carboxyl-terminal (COOH-terminal) domain. Experiments with chimeric lipases containing the HL NH2-terminal domain and the LPL COOH-terminal domain (HL/LPL) or the reverse chimera (LPL/HL) showed that the NH2-terminal domain is responsible for the catalytic efficiency (Vmax/Km) of these enzymes. Furthermore, it was demonstrated that the stimulation of LPL activity by apolipoprotein C-II and the inhibition of activity by 1 M NaCl originate in structural features within the NH2-terminal domain. HL and LPL bind to vascular endothelium, presumably by interaction with cell surface heparan sulfate proteoglycans. However, the two enzymes differ significantly in their heparin affinity. Experiments with the chimeric lipases indicated that heparin binding avidity was primarily associated with the COOH-terminal domain. Specifically, both HL and the LPL/HL chimera were eluted from immobilized heparin by 0.75 M NaCl, whereas 1.1 M NaCl was required to elute LPL and the HL/LPL chimera. Finally, HL is more active than LPL in the hydrolysis of phospholipid substrates. However, the ratio of phospholipase to neutral lipase activity in both chimeric lipases was enhanced by the presence of the heterologous COOH-terminal domain, demonstrating that this domain strongly influences substrate specificity. The NH2-terminal domain thus controls the kinetic parameters of these lipases, whereas the COOH-terminal domain modulates substrate specificity and heparin binding.  相似文献   

15.
Effect of N-linked glycosylation on hepatic lipase activity   总被引:2,自引:0,他引:2  
Hepatic lipase (HL) is a secretory protein synthesized in hepatocytes and bound to liver endothelium. Previous studies have suggested that HL N-linked glycans are required for catalytic activity. To directly test this hypothesis, Xenopus laevis oocytes were used to express native rat HL or HL lacking one or both N-linked glycosylation sites. The expressed and secreted native HL had an apparent molecular mass of 53 kDa, consistent with purified rat liver HL. The mutant lacking both glycosylation sites, while poorly secreted, had an apparent molecular mass of 48 kDa, the same size observed for HL after enzymatic removal of N-linked oligosaccharides. Mutants lacking one of the two sites were intermediate in size and showed reduced secretion. Each of these expressed and secreted proteins had full catalytic activity that was inhibited by antisera to rat HL. Thus, N-linked glycosylation of rat HL, while important to lipase secretion, is not essential for the expression of lipase activity.  相似文献   

16.
Abnormalities in lipoprotein lipase (LPL) function contribute to the development of hypertriglyceridemia, one of the characteristic disorders observed in the metabolic syndrome. In addition to the hydrolyzing activity of triglycerides, LPL modulates various cellular functions via its binding ability to the cell surface. Here we show the effects of catalytically inactive LPL overexpression on high-fat diet (HFD)-induced decreased systemic insulin sensitivity in mice. The binding capacity of catalytically inactive G188E-LPL to C2C12 skeletal muscle cells was not significantly different from that of wild type LPL. Insulin-stimulated IRS-1 phosphorylation and glucose uptake were increased by addition of wild type or mutant LPL in C2C12 cells. After 10 weeks' of HFD feeding, mice had significantly higher blood glucose levels than chow-fed mice in insulin tolerance tests. The blood glucose levels after insulin injection was significantly decreased in mutated LPL-overexpressing mice (G188E mice), as well as in wild type LPL-overexpressing mice (WT mice). Overexpression of catalytically inactive LPL, as well as wild type LPL, improved impaired insulin sensitivity in mice. These results show that decreased expression of LPL possibly causes the insulin resistance, in addition to hypertriglyceridemia, in metabolic syndrome.  相似文献   

17.
Lipoprotein lipase (LPL) is a non-covalent, homodimeric, N-glycosylated enzyme important for metabolism of blood lipids. LPL is regulated by yet unknown post-translational events affecting the levels of active dimers. On co-expression of LPL with human molecular chaperones, we found that calreticulin had the most pronounced effects on LPL activity, but calnexin was also effective. Calreticulin caused a 9-fold increase in active LPL, amounting to about 50% of the expressed LPL protein. The total expression of LPL protein was increased less than 20%, and the secretion rates for active and inactive LPL were not significantly changed by the chaperone. Thus, the main effect was an increased specific activity of LPL both in cells and media. Chromatography on heparin-Sepharose and sucrose density gradient centrifugation demonstrated that most of the inactive LPL was monomeric and that calreticulin promoted formation of active dimers. Higher oligomers of inactive LPL were present in cell extracts, but only monomers and dimers were secreted to the medium. Interaction between LPL and calreticulin was demonstrated, and the effect of the chaperone was prevented by castanospermine, an inhibitor of N-glycan glucose trimming. Our data indicate an important role of endoplasmic reticulum-based chaperones for the folding/dimerization of LPL.  相似文献   

18.
Characterization of the lipolytic activity of endothelial lipase   总被引:16,自引:0,他引:16  
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family previously reported to have phospholipase activity. Using radiolabeled lipid substrates, we characterized the lipolytic activity of this enzyme in comparison to lipoprotein lipase (LPL) and hepatic lipase (HL) using conditioned medium from cells infected with recombinant adenoviruses encoding each of the enzymes. In the absence of serum, EL had clearly detectable triglyceride lipase activity. Both the triglyceride lipase and phospholipase activities of EL were inhibited in a dose-dependent fashion by the addition of serum. The ratio of triglyceride lipase to phospholipase activity of EL was 0.65, compared with ratios of 24.1 for HL and 139.9 for LPL, placing EL at the opposite end of the lipolytic spectrum from LPL. Neither lipase activity of EL was influenced by the addition of apolipoprotein C-II (apoC-II), indicating that EL, like HL, does not require apoC-II for activation. Like LPL but not HL, both lipase activities of EL were inhibited by 1 M NaCl. The relative ability of EL, versus HL and LPL, to hydrolyze lipids in isolated lipoprotein fractions was also examined using generation of FFAs as an end point. As expected, based on the relative triglyceride lipase activities of the three enzymes, the triglyceride-rich lipoproteins, chylomicrons, VLDL, and IDL, were efficiently hydrolyzed by LPL and HL. EL hydrolyzed HDL more efficiently than the other lipoprotein fractions, and LDL was a poor substrate for all of the enzymes.  相似文献   

19.
Hepatic lipase: structure/function relationship,synthesis, and regulation   总被引:24,自引:0,他引:24  
Hepatic lipase (HL) is a lipolytic enzyme, synthesized by hepatocytes and found localized at the surface of liver sinusoid capillaries. In humans, the enzyme is mostly bound onto heparan-sulfate proteoglycans at the surface of hepatocytes and also of sinusoid endothelial cells. HL shares a number of functional domains with lipoprotein lipase and with other members of the lipase gene family. It is a secreted glycoprotein, and remodelling of the N-linked oligosaccharides appears to be crucial for the secretion process, rather than for the acquisition of the catalytic activity. HL is also present in adrenals and ovaries, where it might promote delivery of lipoprotein cholesterol for steroidogenesis. However, evidence of a local synthesis is still controversial. HL activity is fairly regulated according to the cell cholesterol content and to the hormonal status. Coordinate regulations have been reported for both HL and the scavenger-receptor B-I, suggesting complementary roles in cholesterol metabolism. However, genetic variants largely contribute to HL variability and their possible impact in the development of a dyslipidemic phenotype, or in a context of insulin-resistance, is discussed.  相似文献   

20.
The objective of this study was to establish a new lipoprotein lipase (LPL) and hepatic lipase (HL) activity assay method. Seventy normal volunteers were recruited. Lipase activities were assayed by measuring the increase in absorbance at 546 nm due to the quinoneine dye. Reaction mixture-1 (R-1) contained dioleoylglycerol solubilized with lauryldimethylaminobetaine, monoacylglycerol-specific lipase, glycerolkinase, glycerol-3-phosphate oxidase, peroxidase, ascorbic acid oxidase, and apolipoprotein C-II (apoC-II). R-2 contained Tris-HCl (pH 8.7) and 4-aminoantipyrine. Automated assay of lipase activities was performed with an automatic clinical analyzer. In the assay for HL + LPL activity, 160 microl R-1 was incubated at 37 degrees C with 2 microl of sample for 5 min, and 80 microl R-2 was added. HL activities were measured under the same conditions without apoC-II. HL and LPL activities were also measured by the conventional isotope method and for HL mass by ELISA. Lipase activity detected in a 1.6 M NaCl-eluted fraction from a heparin-Sepharose column was enhanced by adding purified apoC-II in a dose-dependent manner, whereas that eluted by 0.8 M NaCl was not. Postheparin plasma-LPL and HL activities measured in the present automated method had high correlations with those measured by conventional activity and mass methods. This automated assay method for LPL and HL activities is simple and reliable and can be applied to an automatic clinical analyzer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号