首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas chromatography-mass spectrometry with selected-ion monitoring was used to study radiation-induced damage to DNA. Quantitative analysis of modified purine and pyrimidine bases resulting from exposure to ionizing radiation using this technique is dependent upon the selection of appropriate internal standards and calibration of the mass spectrometer for its response to known quantities of the internal standards and the products of interest. The compounds 6-azathymine and 8-azaadenine were found to be suitable internal standards for quantitative measurement of base damage in DNA. For the purpose of calibration of the mass spectrometer. relative molar response factors for intense characteristic ions were determined for the trimethylsilyl derivatives of 5-hydroxyuracil, thymine glycol, and 5,6-dihydrothymine using 6-azathymine, and for the trimethylsilyl derivatives of 4,6-diamino-5-formamidopyrimidine, 8-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 8-hydroxyguanine using 8-azaadenine. Accurate measurement of the yield of radiation-induced modifications to the DNA bases is also dependent upon two chemical steps in which the purines and pyrimidines are released from the sugar-phosphate backbone and then derivatized to make them volatile for gas chromatography. The completeness of these reactions, in addition to assessing the stability of the modified DNA bases in acid and their trimethylsilylated derivatives over the time necessary to complete the experimental analysis was also examined. Application of this methodology to the measurement of radiation-induced base modification in heat-denatured, nitrous oxidesaturated aqueous solutions of DNA is presented.  相似文献   

2.
Morari CI  Muntean CM 《Biopolymers》2003,72(5):339-344
Large changes in the Raman spectra of calf thymus DNA are observed upon lowering the pH. In order to gain a better insight into these effects, several simulations of the Raman spectra of the guanine-cytosine (GC) Watson-Crick and Hoogsteen base pairs are performed. By comparing the Raman bands of GC base pairs in calf thymus DNA at high and low pH with the theoretical simulations of GC base pairs, it is found that the intensity changes in the theoretical bands located between 400 and 1000 cm(-1) are small compared to the experimental ones. The behavior of the cytosine band at 1257 cm(-1) upon lowering the pH is not reproduced in the GC theoretical spectra. The bands located above 1300 cm(-1) in the theoretical spectra display intensity changes that are similar to those found for GC base pairs in calf thymus DNA spectra.  相似文献   

3.
Aspecialdyestuffwaschosenandmadetobeabsorbedbythecellsoftumor,andthenthecellswereirradiatedunderalaserbeamwithacertainwavelengthinordertocurecancer.Thisisknownaslaserchemicaltherapy.Althoughphotosensitizationhasbeendevelopedintheearly20thcenturyandanum…  相似文献   

4.
M A Novoseler 《Biofizika》1983,28(4):570-572
Studies were carried out of circular dichroism spectra of the complexes between poly-l-lysine (PL) and calf thymus DNA, E. coli DNA, T2--and T7--phage DNA, Modiolus sp. DNA. The results indicate that PL more strongly changes AT--DNA conformation as compared to GC DNA conformation. This change correlates with the size of minimal PL clusters on DNA investigated. Sequence of DNA bases produces almost no effect on conformational changes caused by the complex-formation with PL.  相似文献   

5.
GC/MS technique was used to identify endogenous levels of oxidatively modified DNA bases. To avoid possible artefact formation we used Fpg and Endo III endonucleases instead of acid hydrolysis to liberate the base products from unmodified DNA samples. Several different DNA preparations were used: (i) commercial calf thymus DNA, (ii) DNA isolated from rat liver, (iii) DNA isolated from human lymphocytes and (iv) nuclei isolated from rat liver. In all DNA samples used in our assays the most efficiently removed bases by Fpg protein are FapyG and FapyA although 8-oxoG was also detected in all preparations. The amount of 8-oxoG in human lymphocytes and in rat liver DNA was 3 and 2 per 10(7)bases, respectively. It is reasonable to postulate that the presented method is one of the techniques which should be used to reveal the enigma of endogenous, oxidative DNA damage.  相似文献   

6.
GC/MS technique was used to identify endogenous levels of oxidatively modified DNA bases. To avoid possible artefact formation we used Fpg and Endo III endonucleases instead of acid hydrolysis to liberate the base products from unmodified DNA samples. Several different DNA preparations were used: (i) commercial calf thymus DNA, (ii) DNA isolated from rat liver, (iii) DNA isolated from human lymphocytes and (iv) nuclei isolated from rat liver. In all DNA samples used in our assays the most efficiently removed bases by Fpg protein are FapyG and FapyA although 8-oxoG was also detected in all preparations. The amount of 8-oxoG in human lymphocytes and in rat liver DNA was 3 and 2 per 107 bases, respectively. It is reasonable to postulate that the presented method is one of the techniques which should be used to reveal the enigma of endogenous, oxidative DNA damage.  相似文献   

7.
A method combining gas chromatography and mass spectrometry (GC-MS) with multiple specific ion monitoring has been developed for the detection of 5-methylcytosine and the quantitation of the ratio of methyleytosine to cytosine in DNA. The trimethylsilyl derivatives of cytosine and 5-methylcytosine obtained from DNA hydrolysates are separated by isothermal elution on an OV-225 column and detected by specific ion monitoring in a DuPont 321 mass spectrometer. As little as 1.6 pmol of 5-methylcytosine in Φχ174 DNA can be detected, corresponding to a tenfold improvement in sensitivity over that obtained by conventional techniques. The ratio of 5-methylcytosine to cytosine of DNA from φχ174, calf thymus, salmon sperm, and several mouse tissues has also been determined. The results agree well with those obtained by other methods.  相似文献   

8.
Mechanism of action of a mammalian DNA repair endonuclease   总被引:17,自引:0,他引:17  
The mechanism of action of a DNA repair endonuclease isolated from calf thymus was determined. The calf thymus endonuclease possesses a substrate specificity nearly identical with that of Escherichia coli endonuclease III following DNA damage by high doses of UV light, osmium tetroxide, and other oxidizing agents. The calf thymus enzyme incises damaged DNA at sites of pyrimidines. A cytosine photoproduct was found to be the primary monobasic UV adduct. The calf thymus endonuclease and E. coli endonuclease III were found to possess similar, but not identical, DNA incision mechanisms. The mechanism of action of the calf thymus endonuclease was deduced by analysis of the 3' and 5' termini of the enzyme-generated DNA scission products with DNA sequencing methodologies and HPLC analysis of the material released by the enzyme following DNA damage. The calf thymus endonuclease removes UV light and osmium tetroxide damaged bases via an N-glycosylase activity followed by a 3' apurinic/apyrimidinic (AP) endonuclease activity. The calf thymus endonuclease also possesses a novel 5' AP endonuclease activity not possessed by endonuclease III. The product of this three-step mechanism is a nucleoside-free site flanked by 3'-and 5'-terminal phosphate groups. These results indicate the conservation of both substrate specificity and mechanism of action in the enzymatic removal of oxidative base damage between prokaryotes and eukaryotes. We propose the name redoxy endonucleases for this group of enzymes.  相似文献   

9.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

10.
Influence of Ca2+ cations on low pH-induced DNA structural transitions   总被引:2,自引:0,他引:2  
A confocal Raman microspectrometer was used to investigate the influence of Ca2+ cations on low pH-induced DNA structural changes. The effects of Ca2+ cations on the protonation mechanism of opening AT and changing the protonation of GC base pairs in DNA are discussed. Based on the observation that the midpoint of the transition of Watson-Crick GC base pairs to protonated GC base pairs lies at around pH 3 (analyzing the 681 cm(-1) line), measurements were carried out on calf thymus DNA at neutral pH and pH 3 in the presence of low and high concentrations of Ca2+ cations. Raman spectra show that low concentrations of Ca2+ cations partially protect DNA against protonation of cytosine (characteristic line at 1262 cm(-1)) and do not protect adenine (characteristic line at 1304 cm(-1)) and the N(7) of guanine (line at 1488 cm(-1)) against binding of H+. High Ca2+ concentrations can prevent protonation of cytosine and protonation of adenine (little disruption of AT pairs). Analyzing the line at 1488 cm(-1), which obtains most of its intensity from a guanine vibration, high salt was also found to protect the N(7) of guanine against protonation.  相似文献   

11.
The degradation of the nucleotides dAMP, dGMP, dCMP and dTMP and of calf thymus DNA by ozone was studied. In all cases both base and sugar moiety were degraded. Furthermore, strand breaks were induced in calf thymus DNA. Hydroxyl radicals were probably involved in the oxidation of the base in dAMP and of the deoxyribose ring, but not in the degradation of the other bases. This indicates that ozone-induced DNA damage proceeds both directly via ozone molecules and indirectly via hydroxyl radicals.  相似文献   

12.
《Free radical research》2013,47(4-6):279-284
The degradation of the nucleotides dAMP, dGMP, dCMP and dTMP and of calf thymus DNA by ozone was studied. In all cases both base and sugar moiety were degraded. Furthermore, strand breaks were induced in calf thymus DNA. Hydroxyl radicals were probably involved in the oxidation of the base in dAMP and of the deoxyribose ring, but not in the degradation of the other bases. This indicates that ozone-induced DNA damage proceeds both directly via ozone molecules and indirectly via hydroxyl radicals.  相似文献   

13.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

14.
Oxidative DNA damage and its repair in primary rat hepatocyte cultures was investigated following 4 h of incubation with the toxic iron chelate, ferric nitrilotriacetate (Fe-NTA), in the presence or absence of the potent protective flavonoid myricetin (25-50-100 microM). Seven DNA base oxidation products were quantified in DNA extracts by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode. Concomitantly, DNA repair capacity of hepatocytes was estimated by the release of oxidized-base products into culture media, using the same GC-MS method. A genotoxic effect of Fe-NTA (100 microM) in hepatocytes was evidenced by a severe increase in DNA oxidation over basal levels, with accumulation in cellular DNA of five oxidation products derived from both purines and pyrimidines. This prooxidant effect of iron was also noted by an induction of lipid peroxidation, estimated by free malondialdehyde production. Addition of increasing concentrations of myricetin (25-50-100 microM) simultaneously with iron prevented both lipid peroxidation and accumulation of oxidation products in DNA. Moreover, as an activation of DNA repair pathways, myricetin stimulated the release of DNA oxidation bases into culture media, especially of purine-derived oxidation products. This removal of highly mutagenic oxidation products from DNA of hepatocytes might correspond to an activation of DNA excision-repair enzymes by myricetin. This was verified by RNA blot analysis of DNA polymerase beta gene expression which was induced by myricetin in a dose-dependent manner. This represented a novel and original mechanism of cytoprotection by myricetin against iron-induced genotoxicity via stimulation of DNA repair processes. Since iron-induced DNA damage and inefficient repair in hepatocytes could be related to genotoxicity and most probably to hepatocarcinogenesis, modulation of these processes in vitro by myricetin might be relevant in further prevention of liver cancer derived from iron overload pathologies.  相似文献   

15.
Chemical determination of free radical-induced damage to DNA.   总被引:26,自引:0,他引:26  
Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.  相似文献   

16.
Oxidative damage to DNA in human tissues can be determined by measuring multiple products of oxidative damage to the purine and pyrimidine bases using gas chromatography-mass spectrometry (GC-MS). Oxidative damage to lipids (lipid peroxidation) can be quantitated by the mass spectrometry-based determination of F2-isoprostanes, specific end-products of the peroxidation of arachidonic acid residues in lipids. For both DNA base damage products and 8-epi prostaglandin F2alpha (PGF2alpha), there is a wide variation in levels between different healthy human subjects. We measured multiple products of oxidative damage to DNA bases in white cells, and 8-epi PGF2alpha in plasma, from blood samples obtained from healthy human subjects in the UK and in Portugal. No correlation of 8-epi PGF2alpha levels with levels of any modified DNA base (including 8-hydroxyguanine) was observed. We conclude that no single parameter can be measured as an index of "oxidative stress" or "oxidative damage" in vivo.  相似文献   

17.
GC-MS is a widely used tool to measure oxidative DNA damage because of its ability to identify a wide range of base modification products. However, it has been suggested that the derivatization procedures required to form volatile products prior to GC-MS analysis can sometimes produce artifactual formation of certain base oxidation products, although these studies did not replicate previously-used reaction conditions, e.g. they failed to remove air from the derivatization vials. A systematic examination of this problem revealed that levels of 8-hydroxyguanine, 8-hydroxyadenine,5-hydroxycytosine and 5-(hydroxymethyluracil) in commercial calf thymus DNA determined by GC-MS are elevated by increasing the temperature at which derivatization is performed in our laboratory. In particular, 8-hydroxyguanine levels after silylation at 140°C were raised 8-fold compared to derivatization at 23°C. Experiments on the derivatization of each undamaged base revealed that the artifactual oxidation of guanine, adenine, cytosine and thymine respectively was responsible. Formation of the above products was potentiated by not purging with nitrogen prior to derivatization. Increasing the temperature to 140°C or allowing air to be present during derivatization did not significantly increase levels of the other oxidized bases measured.

This work suggests that artifactual oxidation during derivatization is restricted to certain products (8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-[hydroxymethyluracil]) and can be decreased by reducing the temperature of the derivatization reaction to 23°C and excluding as much air possible. Despite some recent reports, we were easily able to detect formamidopyrimidines in acid-hydrolyzed DNA. Artifacts of derivatization are less marked than has been claimed in some papers and may vary between laboratories, depending on the experimental procedures used, in particular the efficiency of exclusion of O2 during the derivatization process.  相似文献   

18.
DNA damage induced by oxygen radicals, e.g., hydroxyl radicals generated in living cells either by cellular metabolism or external agents such as ionizing radiations, appears to play an important role in mutagenesis, carcinogenesis, and aging. Elucidation of the chemical nature of such DNA lesions at biologically significant quantities is required for the assessment of their biological consequences and repair. For this purpose, a sensitive method using gas chromatography-mass spectrometry with the selected-ion-monitoring technique (GC-MS/SIM) was developed in the present work. DNA was exposed to hydroxyl radicals and hydrogen atoms produced by ionizing radiation in N2O-saturated aqueous solution. DNA samples were subsequently hydrolyzed with formic acid, trimethylsilylated, and analyzed by GC-MS/SIM. Characteristic ions from previously known mass spectra of DNA base products as their trimethylsilyl derivatives were recorded and the area counts of each ion were integrated. From these acquired data, a partial mass spectrum of each product was generated and then compared with those of authentic materials. This technique permitted the detection and characterization of a large number of free radical-induced based products of DNA, i.e., 5,6-dihydrothymine, 5-hydroxy-5,6-dihydrothymine, 5-hydroxymethyluracil, 5-hydroxyuracil, 5-hydroxycytosine, thymine glycol, 4,6-diamino-5-formamidopyrimidine, 8-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 8-hydroxyguanine, simultaneously in a single sample after radiation doses from 0.1 to 10 Gy. Detectable amounts of the base products were found to be as low as approximately 10 fmol per injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A sensitive assay for 5-methylcytosine in DNA has been developed based on stable isotope dilution gas chromatography-mass spectrometry with selected ion monitoring. 5-([2H3]-Methyl)cytosine and [methyl-2H3]thymine have been synthesized as internal standards for analysis of DNA following acid digestion, conversion of pyrimidines to volatile t-butyldimethylsilyl derivatives, and separation in 3 min by gas chromatography. Submicrogram amounts of DNA have been analyzed for 5-methylcytosine content in the range 0.02–1.5 mol%. The estimated limit of quantitative measurement is 0.3 pmol of methylated base in a DNA hydrolysate. The method is compared with other techniques for quantitative measurement of methylated bases in DNA, and 5-methylcytosine levels and precision of analysis for calf thymus, pBR322, and ΦX-174 DNAs are reported and compared with literature values. The method can readily be adapted to the accurate high-sensitivity analysis of other methylated bases in DNA.  相似文献   

20.
Release of free bases from calf thymus DNA upon irradiation in aerated 0.1 mol dm-3NaClO4 at pH 7 has been measured by HPLC and shown to be markedly influenced by the presence of thiols during irradiation. The ability of thiols to protect DNA was shown to depend upon the net charge (Z) at pH 7 in the order WR 1065 (Z = +2) greater than cysteamine (Z = +1) greater than 2-mercaptoethanol (Z = 0) approximately equal to dithiothreitol (Z = 0) greater than GSH (Z = -1) approximately equal to 2-mercaptoethanesulfonic acid (Z = -1) approximately equal to 2-mercaptosuccinate (Z = -2). A similar dependence of protection upon net charge was found for disulfides: cystamine (Z = +2) greater than 2-mercaptoethyl disulfide (Z = 0) greater than GSSG (Z = -2). Protection by WR 1065, but not by 2-mercaptoethanol or GSH, was found to decrease significantly with increasing ionic strength. Protection by WR 1065 and GSH was not markedly dependent upon pH between pH 6 and 8. The results are explained in terms of electrostatic interaction of the thiols with DNA, leading to high concentrations of cations near DNA, which allow them to scavenge hydroxyl radicals and repair DNA radicals effectively and to low concentrations of anionic thiols near DNA, which limit their effectiveness as protectors. Poly(dG,dC) and calf thymus DNA exhibited comparable release of G and C upon changing from 0.1 to 0.7 mol dm-3 MgSO4. Since this change causes poly(dG,dC), but not calf thymus DNA, to undergo a change from the B-form to the Z-form of DNA, both forms must have a comparable susceptibility to radiation-induced base release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号