首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polychaete annelids and arthropods are both segmented protostome invertebrates. To investigate whether the segmented body plan of these two phyla share a common molecular ground pattern, we report the developmental expression of orthologues of the arthropod segment polarity genes engrailed (en), hedgehog (hh), and wingless (wg/Wnt1) in larval and juvenile stages of the polychaete annelid Capitella sp. I and en in a second polychaete, Hydroides elegans. Temporally, neither Wnt1 nor hh are detected in the segmented region of the larval body until after morphological segmentation is apparent. Expression of CapI-Wnt1 is limited to a ring of ectoderm marking the future anus during larval segmentation. CapI-hh is expressed in a ring of the hindgut internal to that of CapI-Wnt1, as well as in a subset of ventral nerve cord neurons, anterior gut tissue, and mesoderm. In both H. elegans and Capitella sp. I, en is expressed in a spatially and temporally dynamic manner in segmentally iterated structures as well as a population of cells that migrate internally from ectoderm to mesoderm, possibly representing a population of ecto-mesodermal precursors. Significantly, the expression patterns we report for wg, en, and hh orthologues in Capitella sp. I and for en in larval development of H. elegans are not comparable to the highly conserved ectodermal segment polarity pattern observed in arthropods at any life history stage, consistent with distinct origins of segmentation between annelids and arthropods.  相似文献   

2.
SUMMARY Annelids and arthropods, despite their distinct classification as Lophotrochozoa and Ecdysozoa, present a morphologically similar, segmented body plan. To elucidate the evolution of segmentation and, ultimately, to align segments across remote phyla, we undertook a refined expression analysis to precisely register the expression of conserved regionalization genes with morphological boundaries and segmental units in the marine annelid Platynereis dumerilii. We find that Pdu-otx defines a brain region anterior to the first discernable segmental entity that is delineated by a stripe of engrailed-expressing cells. The first segment is a "cryptic" segment that lacks chaetae and parapodia. This and the subsequent three chaetigerous larval segments harbor the anterior expression boundary of gbx, hox1, hox4, and lox5 genes, respectively. This molecular segmental topography matches the segmental pattern of otx, gbx, and Hox gene expression in arthropods. Our data thus support the view that an ancestral ground pattern of segmental identities existed in the trunk of the last common protostome ancestor that was lost or modified in protostomes lacking overt segmentation.  相似文献   

3.
Expression patterns for five Hox genes were examined by whole-mount in situ hybridization in larvae of Chaetopterus, a polychaete annelid with a tagmatized axial body plan. Phylogenetic analysis demonstrates that these genes are orthologs of the Drosophila genes labial, proboscipedia, zen, Deformed, and Sex combs reduced and are termed CH-Hox1, CH-Hox2, CH-Hox3, CH-Hox4, and CH-Hox5, respectively. Expression studies reveal a biphasic expression pattern. In early larval stages, well before any indications of segmental organization exist, a novel pattern of expression in bilateral posterior proliferating cell populations, corresponding to the teloblasts, was detected for each of the genes, with CH-Hox1 and CH-Hox2 expressed before the remaining three. In middle larval stages, all five genes are expressed in bilateral strips along the ventral midline, corresponding with the developing ventral nerve cord. In addition, CH-Hox1 and CH-Hox2 show strong expression at the foregut-midgut boundary. By late larval stages the expression is generally confined to the ventral CNS and ectoderm of the anterior parapodia. Anterior boundaries of expression are "colinear," at later larval stages, with CH-Hox2 expressed most rostrally, in the first segment, and anterior expression boundaries for CH-Hox1, CH-Hox3, CH-Hox4, and CH-Hox5 in segments 2, 3, 4, and 5, respectively. Like vertebrates and spiders, but unlike insects, CH-Hox3 participates in this colinear axial expression pattern. CH-Hox1 and CH-Hox2 have distinct posterior boundaries of expression in the ninth segment, which corresponds to a major morphological boundary, and may reflect a reorganization of Hox gene regulation related to the evolutionary reorganization of the Chaetopterus body plan.  相似文献   

4.
Segment polarity genes are expressed and required in restricted domains within each metameric unit of the Drosophila embryo. We have used the expression of two segment polarity genes engrailed (en) and wingless (wg) to monitor the effects of segment polarity mutants on the basic metameric pattern. Absence of patched (ptc) or naked (nkd) functions triggers a novel sequence of en and wg patterns. In addition, although wg and en are not expressed on the same cells absence of either one has effects on the expression of the other. These observations, together with an analysis of mutant phenotypes during development, lead us to suggest that positional information is encoded in cell states defined and maintained by the activity of segment polarity gene products.  相似文献   

5.
A homologue of the segment polarity gene wnt-1 from Bombyx mori (Bmwnt-1) has been characterized. The segmentally reiterated pattern of Bmwnt-1 transcrip9t distribution in B. mori embryos suggested its segment polarity function. Maximal levels of Bmwnt-1 RNA during embryonic development were reached by stage 21A. In the larval stages, Bmwnt-1 was expressed in the fore- and hindwing discs, ovaries, testes and gut, reminiscent of the expression domains in Drosophila. Bmwnt-1 was expressed in the wing-margin area of both the fore- and hindwing discs. The pattern of wnt-1 expression in the hindwing discs was similar to that in the butterfly Precis coenia but subtle differences existed in forewing discs of the two species, which correlated well with the absence of proximal bands of pigmentation in the adult Bombyx wings. In addition, Bmwnt-1 was expressed in the silkglands and the expression was confined to the anterior sub-compartment within the middle silkglands throughout development from the embryonic to late larval stages. This domain of Bmwnt-1 expression overlapped with those of Cubitus interruptus (BmCi) and sericin-2 but excluded the Engrailed expression domain viz. the middle and posterior sub-compartments of middle silkglands. Bmwnt-1 expression was detected only during the intermoults and not in the moulting periods.  相似文献   

6.
The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods.  相似文献   

7.
We report the characterization of a caudal gene from the rhizocephalan cirripede Sacculina carcini and its embryonic and larval expression patterns. Cirripedes are maxillopodan crustaceans that are devoid of any complete abdominal segment at the adult stage. We currently explore the genetic basis of this peculiar body plan. In a previous study we have shown that they probably lack the abdominalA gene, while possessing the other Hox genes shared by arthropods. However, at least a part of the genetic program might be conserved, since the engrailed.a and engrailed.b genes are expressed in a posterior region that we interpret as a relic of an ancestral abdomen. Here we show first that the Sacculina caudal gene is expressed early in embryogenesis, which makes it the earliest genetic marker evidenced in the development of Sacculina and of any other crustacean species. It is expressed later in the embryo in the caudal papilla, a posterior proliferating zone of cells. During the larval stages, the caudal gene is first expressed in the whole thoracic region; then its expression regresses to the posterior end of the larva. Surprisingly, it is never expressed in the vestigial abdomen. This lack of expression of the Sacculina caudal gene in a posterior region, at odds with what is known in all other studied metazoan species, might be correlated with the defective development of the abdomen.  相似文献   

8.
9.
10.
Spiders belong to the chelicerates, which is a basal arthropod group. To shed more light on the evolution of the segmentation process, orthologs of the Drosophila segment polarity genes engrailed, wingless/Wnt and cubitus interruptus have been recovered from the spider Cupiennius salei. The spider has two engrailed genes. The expression of Cs-engrailed-1 is reminiscent of engrailed expression in insects and crustaceans, suggesting that this gene is regulated in a similar way. This is different for the second spider engrailed gene, Cs-engrailed-2, which is expressed at the posterior cap of the embryo from which stripes split off, suggesting a different mode of regulation. Nevertheless, the Cs-engrailed-2 stripes eventually define the same border as the Cs-engrailed-1 stripes. The spider wingless/Wnt genes are expressed in different patterns from their orthologs in insects and crustaceans. The Cs-wingless gene is expressed in iterated stripes just anterior to the engrailed stripes, but is not expressed in the most ventral region of the germ band. However, Cs-Wnt5-1 appears to act in this ventral region. Cs-wingless and Cs-Wnt5-1 together seem to perform the role of insect wingless. Although there are differences, the wingless/Wnt-expressing cells and en-expressing cells seem to define an important boundary that is conserved among arthropods. This boundary may match the parasegmental compartment boundary and is even visible morphologically in the spider embryo. An additional piece of evidence for a parasegmental organization comes from the expression domains of the Hox genes that are confined to the boundaries, as molecularly defined by the engrailed and wingless/Wnt genes. Parasegments, therefore, are presumably important functional units and conserved entities in arthropod development and form an ancestral character of arthropods. The lack of by engrailed and wingless/Wnt-defined boundaries in other segmented phyla does not support a common origin of segmentation.  相似文献   

11.
Imaginal pattern duplications caused by hypomorphic expression of the segment polarity gene costal-2 are described. These affect the anteroposterior coordinate of the imaginal disc. A very small part of the pattern is deleted and a large number of additional pattern elements arise in a progressive order, anterior-most first followed by more and more posterior structures. Mosaic analyses show that the duplications arise nonautonomously in the larval stages but that the costal-2 gene is not required after early embryogenesis. Arguments that the duplications are the result of cell interactions and intercalary growth that themselves arise from an abnormal polarity of the embryonic segment are presented.  相似文献   

12.
N D Hopwood  A Pluck  J B Gurdon 《Cell》1989,59(5):893-903
We have cloned a Xenopus cDNA related to the twist gene, which is required for mesodermal differentiation in Drosophila. Northern blots of dissected embryos and in situ hybridization show that the corresponding mRNA, called Xtwi, first appears in early gastrulae, and is present only in mesodermal cells. Within the mesoderm, Xtwi is expressed in the notochord and lateral plate, but not in the myotome; therefore there is a complementary pattern of Xtwi and muscle-specific gene expression in the mesoderm. Xtwi expression therefore marks the subdivision of the mesoderm. Xtwi is also activated a few hours later in the early development of the neural crest. This gene is thus expressed in response to two sequential early inductions in frog development.  相似文献   

13.
14.
The segment polarity genes engrailed and wingless are expressed in neighboring stripes of cells on opposite sides of the Drosophila parasegment boundary. Each gene is mutually required for maintenance of the other's expression; continued expression of both also requires several other segment polarity genes. We show here that one such gene, hedgehog, encodes a protein targeted to the secretory pathway and is expressed coincidently with engrailed in embryos and in imaginal discs; maintenance of the hedgehog expression pattern is itself dependent upon other segment polarity genes including engrailed and wingless. Expression of hedgehog thus functions in, and is sensitive to, positional signaling. These properties are consistent with the non-cell autonomous requirement for hedgehog in cuticular patterning and in maintenance of wingless expression.  相似文献   

15.
Roles of wingless in patterning the larval epidermis of Drosophila.   总被引:12,自引:0,他引:12  
The larval epidermis of Drosophila shows a stereotyped segmentally repeating pattern of cuticular structures. Mutants deficient for the wingless gene product show highly disrupted patterning of the larval cuticle. We have manipulated expression of the wg gene product to assess its role in this patterning process. We present evidence for four distinct phases of wg function in epidermal cells: (1) an early requirement in engrailed-expressing cells to establish and maintain stable expression of en, (2) a discrete period when wg and en gene products act in concert to generate positional values in the anterior portion of the ventral segment and all values of the dorsal and lateral epidermis, (3) a progressive function (dependent on prior interaction with the en-expressing cells) in conferring positional values to cells within the posterior portion of the segment, and (4) a late continuous requirement for maintaining some ventral positional values.  相似文献   

16.
The paired-like class of homeobox genes contains numerous distinct families, many of which have been implicated in a variety of developmental functions. We report the isolation and expression of a gene with high similarity to Drosophila melanogaster homeobrain from the polychaete annelid Capitella sp. I. The homeobrain-like (hbnl) gene is a paired-like gene that contains a conserved homeodomain, octapeptide region, alanine stretches, and an OAR domain. Gene orthology analyses of the homeodomain from CapI-hbnl places this gene in a new family of paired-like homeodomain genes that includes D. melanogaster homeobrain (hbn) and representatives from all major bilaterian clades as well as a cnidarian gene. CapI-hbnl expression is largely restricted to subsets of cells in the brain and eyes during larval development in Capitella sp. I. The earliest expression of CapI-hbnl is in small discrete cell clusters in the cerebral ganglia. This expression persists through late larval developmental stages whereas expression is absent in postmetamorphic juveniles. Outside the brain, expression is present on the ventral side of the larva in two small cell clusters, at the brain/pharyngeal border and in the anterior-most segment. CapI-hbnl shares features of brain expression with hbn, although in contrast to hbn, which is expressed along the length of the ventral nerve cord, CapI-hbnl has a restricted anterior expression pattern. CapI-hbnl represents an important neural marker for characterization of the annelid nervous system.  相似文献   

17.
ABSTRACT: BACKGROUND: A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. RESULTS: Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 (pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. CONCLUSIONS: The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods.  相似文献   

18.
We have isolated three classes of enhancertrap lines of Drosophila in which lacZ expression patterns in the imaginal discs are consistent with the idea of a polar (radial and angular) coordinate system of positional information. In the first class (HZ76), a circular pattern was expressed transiently during the mid-third instar larval stage when the radial components of the coordinate are probably generated. The expression patterns of the second class (HZ84) were sector-shaped and circular in the leg disc, suggesting a correlation with both radial and angular coordinate values. The expression patterns found in the third class (PZ63 and PZ22) were circular and appeared to reflect radial positional values. Expression in the latter two classes always began in the presumptive dorsal region of the leg disc and gradually spread to the ventral region. These developmental profiles of expression suggested the existence of a centre that initiates patterned gene expression in the presumptive dorsal region of the leg disc. The PZ22 line showed transient expression during tarsal segmentation, suggesting its involvement in tarsal segment formation. We have cloned the PZ22 gene and partially determined its sequence. The deduced amino acid sequence contained a zinc finger motif found in DNA/RNA binding proteins. By in situ hybridization, we determined that the PZ22 gene was transcribed in the leg disc in a pattern identical to that of the lacZ expression. In addition, it was expressed transiently in the embryonic mesoderm during mesoderm segmentation. The PZ22 gene, therefore, may function both in mesodermal segmentation in the embryo and in tarsal segmentation in the imaginal disc.  相似文献   

19.
We have cloned the full length of a novel cDNA named Bombyx mori cuticle protein that contains an AlaAlaProAla/Val-repeat (BMCPA) from a cDNA library of integument in the larval silkworm. Both a typical tandem repeat (A-A-P-A/V) for cuticle protein and a unique tandem repeat with Ser, Ala, Gly, Pro, Val, Tyr and Thr were observed in the predicted amino acid sequence of the cDNA encoding BMCPA. Approximately 80% of the amino acids in BMCPA were composed of Ser, Ala, Gly, Pro, Val and Tyr. Northern-hybridization analysis indicated that BMCPA mRNA is expressed only in the larval epidermis and that the expression pattern of the BMCPA gene in the developmental stage was observed mainly at the larval stage. We propose BMCPA may be a novel component of cuticle, and may play an important role in the integument of the larval silkworm.  相似文献   

20.
Using sequence homology to the Drosophila Antennapedia gene, we isolated a homeobox-containing gene from the lepidopteran, Manduca sexta. Sequence analysis and in situ hybridizations to tissue sections suggest that the Manduca gene encodes a lepidopteran homologue of the Drosophila Bithorax complex gene abdominal-A. The predicted amino acid sequence of a 76 amino acid region that includes the homeobox and the regions immediately flanking it are identical between the Manduca and Drosophila genes. Northern blots reveal that the manduca abd-A gene is expressed first in the early embryo and continues to be expressed throughout later embryonic and larval stages. In situ hybridizations show that the posterior half of the first abdominal segment marks the anterior border of the Manduca abd-A expression. This expression pattern demonstrates the conservation of parasegments as domains of gene activity in the lepidopteran embryo. The Manduca abd-A expression extends from the posterior half of the first abdominal segment through the tenth abdominal segment, a domain that is greater than that of the Drosophila abd-A expression, and reflects the difference in visible segment number between the two insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号