首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are examining the effects of preirradiation of host (monkey) cells upon the replication of UV-damaged SV40. Control cells and cells preirradiated with low fluences (5 or 10 J/m2) of UV were infected with undamaged SV40, and the immediate effects of a subsequent irradiation were determined. UV inhibited total SV 40 DNA synthesis (incorporation of thymidine into viral DNA) in both preirradiated and control cells, but the extent of inhibition was less in the preirradiated cells. A test fluence of 60 J/m2 to SV40 replicating in preirradiated cells reduced synthesis only as much as a test fluence of 25 J/m2 in control cells. The fraction of recently replicated SV40 molecules that re-entered the replication pool and subsequently completed one round of replication in the first 2 h after UV was also decreased less in the preirradiated cells. Thus preirradiation of the host cell mitigates the immediate inhibitory effects of a subsequent UV exposure upon SV40 replication.  相似文献   

2.
Intact and decorticated single-celled Ascaris suum eggs were exposed to UV radiation from low-pressure, germicidal lamps at fluences (doses) ranging from 0 to 8,000 J/m2 for intact eggs and from 0 to 500 J/m2 for decorticated eggs. With a UV fluence of 500 J/m2, 0.44-+/-0.20-log inactivation (mean+/-95% confidence interval) (63.7%) of intact eggs was observed, while a fluence of 4,000 J/m2 resulted in 2.23-+/-0.49-log inactivation (99.4%). (The maximum quantifiable inactivation was 2.5 log units.) Thus, according to the methods used here, Ascaris eggs are the most UV-resistant water-related pathogen identified to date. For the range of fluences recommended for disinfecting drinking water and wastewater (200 to 2,000 J/m2), from 0- to 1.5-log inactivation can be expected, although at typical fluences (less than 1,000 J/m2), the inactivation may be less than 1 log. When the eggs were decorticated (the outer egg shell layers were removed with sodium hypochlorite, leaving only the lipoprotein ascaroside layer) before exposure to UV, 1.80-+/-0.32-log reduction (98.4%) was achieved with a fluence of 500 J/m2, suggesting that the outer eggshell layers protected A. suum eggs from inactivation by UV radiation. This protection may have been due to UV absorption by proteins in the outer layers of the 3- to 4-microm-thick eggshell. Stirring alone (without UV exposure) also inactivated some of the Ascaris eggs (approximately 20% after 75 min), which complicated determination of the inactivation caused by UV radiation alone.  相似文献   

3.
The optimum conditions for the induction of mutants resistant to antibiotics in Brevibacterium flavum ATCC 14067 were determined. UV irradiation at the energy fluence of 6.5 kJ/m2 and N-methyl-N'-nitro-N-nitrosoguanidine (1 mg/mL) at pH 6.0 were used for the induction of mutants. Mutant strains resistant to rifampicin, oleandomycin, streptomycin and erythromycin were prepared.  相似文献   

4.
Exponentially growing human erythroleukemia K562 cells were permeabilized and the dose dependent decrease of DNA synthesis rate was measured after ultraviolet (UV B, 290 nm) irradiation. Cells were able to overcome 2 and 5 J/m2 UV doses, partial recovery was observed at 15 J/m2, while at high (25 J/m2) UV dose replicative DNA synthesis remained suppressed. K562 cells were subjected to synchronization prior to and after UV irradiation (24 J/m2) and 18 fractions were collected by centrifugal elutriation. Cell cycle analysis by flow cytometry did not show early apoptotic cells after UV irradiation. The gradual increase in DNA content typical for non-irradiated cells was contrasted by an early S phase block between 2.2 and 2.4 C-values after UV irradiation. Cell cycle dependent chromatin changes after ultraviolet irradiation were seen as a fine fibrillary network covering the mainly fibrous chromatin structures and incompletely folded primitive chromosomes. Based on observations after UV irradiation and on earlier results with cadmium treatment and gamma irradiation, we confirm that typical chromatin changes characteristic to genotoxic agents can be recognized and classified.  相似文献   

5.
The objective of this study was to compare the ability of heat shock (HS) with that of another type of cellular stress, UV irradiation, to cause the induction of enhanced viral reactivation, a process that may represent an SOS-type repair process in mammalian cells. Studies performed to evaluate the effect of HS on growth of Vero cells revealed that HS at 45 degrees C for 45 min caused inhibition of cell growth similar to that caused by UV irradiation at 12 J/m2, but this inhibition was not observed at HS treatment for 5-15 min, or at a UV fluence of 2 J/m2. Enhanced reactivation of UV-irradiated Herpesvirus was observed in cells which had been pretreated by HS for greater than 30 min or UV at 12 J/m2. The synthesis of new proteins following HS for 15 and 45 min and UV at 12 J/m2 was examined by [35S]methionine-labeling experiments. The new synthesis of two HS proteins with molecular weights of 46 000 and 78 000 was induced by both levels of HS, but to a much greater extent at the high dose. These proteins were not detected in response to UV irradiation. These results indicate that, like UV irradiation, HS at levels inhibitory to cell growth induced enhanced viral reactivation in Vero cells. The results also suggest that at least two proteins in the HS protein family are not necessary for this response to occur.  相似文献   

6.
Using the incorporation of [14C]thymine to measure DNA accumulation, it was shown that exposure of the B/r strain of Escherichia coli to 10 J/m2 of ultraviolet radiation (UV) inhibits replication for about 20 min, but then resumption of replication occurs. Pulse-labelling with [3H]thymidine after exposure of the WT strain to this fluence confirmed the transient inhibition and recovery of DNA replication. After recovery, the rate of accumulation of DNA in the culture increases, to exceed that of the exponentially growing culture, so that eventually the amount of DNA almost equals that of the unirradiated culture. After a higher fluence (20 J/m2), an inhibition of replication recovery was revealed. This fluence delays the reinitiation of DNA accumulation in the culture, measured by [14C]thymine incorporation, for 25 min more, in addition to the 20-min recovery period. This finding was confirmed with pulse-labelling studies, which revealed that the higher exposure represses the rates of replication for 45 min before replication at the normal rate reinitiates in the culture. It was proposed that the inhibition of recovery revealed by these investigations is effected by the UV-induction of an active DNA-replication recovery-inhibition process. With the uvrA strain, rate studies revealed that 1.5 J/m2 of UV (a reduced fluence necessary because of the greater sensitivity of the strain) induces a transient inhibition of DNA replication, with considerable recovery following. Exposure to 3.0 J/m2 induces the transient inhibition of replication, followed by massive recovery inhibition after 20 min of incubation. With uvrA recA, both the lower and the higher fluence resulted in an immediate block of replication with no recovery, confirming the recA gene dependency of the recovery process. The decrease in rate of replication comparable to that seen in the uvrA strain after 20 min, and taken as evidence of the function of the recovery-inhibition process, was not seen. The evidence supports the concept that a process somehow triggered by higher UV fluences functions to repress replication temporarily, presumably allowing time for repair processes to take place before replication overruns closely linked pyrimidine dimers on opposite strands to create lethal lesions.  相似文献   

7.
The formation of DNA strand breaks was characterized in human fibroblasts prepared by several methods. In quiescent monolayer cultures of normal human fibroblasts (NHF), exposure to 254 nm radiation (UV) caused the rapid appearance of DNA strand breaks as monitored by alkaline elution analysis. Maximal levels of DNA breaks were seen 30 min after 10 J/m2; thereafter, strand breaks disappeared. Breakage soon after irradiation appeared to saturate at fluences above 10 J/m2. Xeroderma pigmentosum fibroblasts belonging to complementation group A (XPA) did not display this response which reflects operations of the nucleotidyl DNA excision repair pathway. When fibroblast strains were released from culture dishes by enzymatic digestion with trypsin or by scraping with a rubber policeman, UV-dependent DNA breakage displayed altered dose and time responses. Few breaks were detected in detached preparations of NHF after 10 J/m2 indicating inactivation of nucleotidyl DNA excision repair. The fluence response in detached fibroblasts was linear up to an incident fluence of 100 J/m2. Moreover, after 25 or 50 J/m2, strand breaks accumulated as a linear function of time for up to 2 h after irradiation. This UV-dependent and time-dependent incision activity was also observed in XPA monolayers and released-cell preparations. In permeable fibroblast preparations, DNA breaks accumulated in unirradiated cells that had been released with trypsin or by scraping. Permeabilization in situ saponin to open the plasma membrane produced a cell preparation that accumulated fewer UV-independent breaks. In saponin-permeabilized NHF that were irradiated with 10 J/m2, UV-dependent strand incision activity occurred at about 30% of the rate of incision seen in intact monolayer NHF. These results reveal at least 3 DNA strand incision activities in human fibroblast preparations of which only one reflects operation of the nucleotidyl DNA excision repair pathway.  相似文献   

8.
The ability of UV-irradiated herpes simplex virus to form plaques was examined in monolayers of CV-1 monkey kidney cells preexposed to UV radiation at different intervals before virus assay. From analysis of UV reactivation (Weigle reactivation) curves it was found that as the interval between cell UV irradiation (0-20 J/m2) and initiation of the virus assay was increased over a period of five days, (1) the capacity of the cells to support unirradiated virus plaque formation, which was decreased immediately following UV exposure to the monolayers, increased and returned to approximately normal levels within five days, and (2) at five days an exponential increase was observed in the relative plaque formation of irradiated virus as a function of UV fluence to the monolayers. For high UV fluence (20 J/m2) to the cells, the relative plaque formation by the UV-irradiated virus at five days was about 10-fold higher than that obtained from assay on unirradiated cells. This enhancement in plaque formation is interpreted as a delayed expression of Weigle reactivation. The amount of enhancement resulting from this delayed reactivation was several fold greater than that produced by the Weigle reactivation which occurred when irradiated herpes virus was assayed immediately following cell irradiation.  相似文献   

9.
In this study the role of nucleotide excision repair (NER) in protecting mouse embryonic stem (ES) cells against the genotoxic effects of UV-photolesions was analysed. Repair of cyclobutane pyrimidine dimers (CPD) in transcribed genes could not be detected whereas the removal of (6-4) photoproducts (6-4PP) was incomplete, already reaching its maximum (30%) 4 h after irradiation. Measurements of repair replication revealed a saturation of NER activity at UV doses >5 J/m2 while at a lower dose (2.5 J/m2) the repair kinetics were similar to those in murine embryonic fibroblasts (MEFs). Cytotoxic and mutagenic effects of photolesions were determined in ES cells differing in NER activity. ERCC1-deficient ES cells were hypermutable (10-fold) compared to wild-type cells, indicating that at physiologically relevant doses ES cells efficiently remove photolesions. The effect of the NER deficiency on cytoxicity was only 2-fold. Exposure to high UV doses (10 J/m2) resulted in a rapid and massive induction of apoptosis. Possibly, to avoid the accumulation of mutated cells, ES cells rely on the induction of a strong apoptotic response with a simultaneous shutting down of NER activity.  相似文献   

10.
The extent of DNA excision repair was determined in dermal fibroblast strains from clinically normal and xeroderma pigmentosum (XP; complementation group A) human donors after single or combined exposures to 254-nm ultraviolet light and 4-nitroquinoline 1-oxide (4NQO). The repair was monitored by incubation of the treated cultures in the presence of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of long-patch excision repair, followed by quantitation of araC-accumulated DNA single-strand breaks (representing repair events) by velocity sedimentation analysis in alkaline sucrose gradients. The amount of repair in normal fibroblast strains increased as a function of UV fluence and reached a plateau at 15 J/m2; strand breaks were not detected when these same cultures were irradiated with as much as 60 J/m2 UV and incubated in the absence of araC, implying that an initial (incision) step is rate-limiting in the repair of UV damage. In normal fibroblasts (i) the incidence of araC-detectable lesions removed during fixed intervals following exposure to 4NQO (4 microM; 30 min) was approximately 2.5 times greater than that seen following irradiation with repair-saturating fluences (greater than or equal to 15 J/m2) of UV-rays; and (ii) the amount of repair in cultures treated simultaneously with 4NQO (0.5-6 microM; 30 min) and a repair-saturating fluence of UV (20 J/m2) was found to approach the sum of that arising from exposure to each separately. The XP cells (XP12BE) exhibited a deficiency in the removal of araC-detectable DNA lesions following exposure to either of the carcinogens. Since araC is known to inhibit the repair of alkali-stable 4NQO-DNA adducts (i.e., lesions assumed to be removed by the UV-like excision pathway) but not that of alkali-labile sites (i.e., DNA lesions operated on by the X-ray-like repair pathway), our results strongly imply that the multistep excision-repair pathway operative on UV photoproducts in human fibroblasts differs from that responsible for removing alkali-stable (araC-detectable) 4NQO adducts by at least one step, presumably the rate-limiting incision reaction mediated by a lesion-recognizing endonuclease.  相似文献   

11.
Enhanced survival of UV-irradiated human cytomegalovirus (HCMV) is demonstrated in normal human cells exposed to UV light prior to infection. The UV fluence that gave rise to maximum UV reactivation falls in the range of 15 J/m2. A large number of temperature-sensitive HCMV mutants were found under the peak of reactivation. These results confirm the existence of inducible SOS functions in human cells.  相似文献   

12.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

13.
DNA excision repair modulates the mutagenic effect of many genotoxic agents. The recently observed strand specificity for removal of UV-induced cyclobutane dimers from actively transcribed genes in mammalian cells could influence the nature and distribution of mutations in a particular gene. To investigate this, we have analyzed UV-induced DNA repair and mutagenesis in the same gene, i.e. the hypoxanthine phosphoribosyl-transferase (hprt) gene. In 23 hprt mutants from V79 Chinese hamster cells induced by 2 J/m2 UV we found a strong strand bias for mutation induction: assuming that pre-mutagenic lesions occur at dipyrimidine sequences, 85% of the mutations could be attributed to lesions in the nontranscribed strand. Analysis of DNA repair in the hprt gene revealed that more than 90% of the cyclobutane dimers were removed from the transcribed strand within 8 hours after irradiation with 10 J/m2 UV, whereas virtually no dimer removal could be detected from the nontranscribed strand even up to 24 hr after UV. These data present the first proof that strand specific repair of DNA lesions in an expressed mammalian gene is associated with a strand specificity for mutation induction.  相似文献   

14.
The kinetic and dose dependencies of the SOS-induction in E. coli (uvrA) cells exposed to UV light were investigated. Below 2 J/m2 the rate of the SOS-induction increased with dose. The maximal level of the SOS-response was proportional to the UV dose. Pyrimidine dimers were necessary for the induction. In the dose range 2-10 J/m2 the rate of the SOS-induction decreased with dose. The dose-response curve was non-linear. Pyrimidine dimers were not required for the induction. The nature of the molecular events leading to the SOS-induction at low and high doses was discussed.  相似文献   

15.
UV irradiation of simian virus 40-infected cells at fluences between 20 and 60 J/m2, which yield one to three pyrimidine dimers per simian virus 40 genome, leads to a fluence-dependent progressive decrease in simian virus 40 DNA replication as assayed by incorporation of [3H]deoxyribosylthymine into viral DNA. We used a variety of biochemical and biophysical techniques to show that this decrease is due to a block in the progression of replicative-intermediate molecules to completed form I molecules, with a concomitant decrease in the entry of molecules into the replicating pool. Despite this UV-induced inhibition of replication, some pyrimidine dimer-containing molecules become fully replicated after UV irradiation. The fraction of completed molecules containing dimers goes up with time such that by 3 h after a UV fluence of 40 J/m2, more than 50% of completed molecules contain pyrimidine dimers. We postulate that the cellular replication machinery can accommodate limited amounts of UV-induced damage and that the progressive decrease in simian virus 40 DNA synthesis after UV irradiation is due to the accumulation in the replication pool of blocked molecules containing levels of damage greater than that which can be tolerated.  相似文献   

16.
At any moment during S phase, regions of genomic DNA are in various stages of replication (i.e. initiation, chain elongation, and termination). These stages may be differentially inhibited after treatment with various carcinogens that damage DNA such as UV. We used visualization of active replication units in combed DNA fibers, in combination with quantitative analyses of the size distributions of nascent DNA, to evaluate the role of S-checkpoint proteins in UV-induced inhibition of DNA replication. When HeLa cells were exposed to a low fluence (1 J/m2) of 254 nm UV light (UVC), new initiation events were severely inhibited (5-6-fold reduction). A larger fluence of UVC (10 J/m2) resulted in stronger inhibition of the overall rate of DNA synthesis without decreasing further the frequency of replicon initiation events. Incubation of HeLa cells with caffeine and knockdown of ATR or Chk1 kinases reversed the UVC-induced inhibition of initiation of new replicons. These findings illustrate the concordance of data derived from different experimental approaches, thus strengthening the evidence that the activation of the intra-S checkpoint by UVC is dependent on the ATR and Chk1 kinases.  相似文献   

17.
Synchronized and asynchronously growing cells of a V79 sub-line of the Chinese hamster were either partial-cell irradiation (λ, 254 nm) or laser-UV-microirradiated (λ, 257 nm). Post-incubation with caffeine (1–2 mM) often resulted in chromosome shattering, which was a rare event in the absence of this compound. In experiments with caffeine, the following results were obtained.

Shattering of all the chromosomes of a cell (generalized chromosome shattering, GCS) was induced by partial-cell irradiation at the first post-irradiation mitosis when the UV fluence exceeded and “threshold” valued in the sensitive phases of the cell cycle (G1 and S). GCS was also induced by laser-UV-microirradiation of a small part of the nucleus in G1 of S whereas microirradiation of cytoplasm beside the nucleus was not effective. An upper limit of the UV fluence in the non-irradiated nuclear part due to scattering of the microbeam was experimentally obtained. This UV fluence was significantly below the threshold fluence necessary to induce GCS in whole-cell irradiation experiments. In other cells, partial nuclear irradiation resulted in shattering of a few chromosomes only, while the majority remained intact (partial chromosomes shattering, PCS). G1/early S was the most sensitive phase for induction of GCS by whole-cell and partial nuclear irradiation. The frequency of PCS was observed to increase when partial nuclear irradiation was performed either at lower incident doses or at later stages of S. We suggest that PCS and GCS indicate 2 levels of chromosome damage which can be produced by the synergistic action of UV irradiation and caffeine. PCS may be restricted to microirradiated chromatin whereas GCS involves both irradiated and unirradiated chromosomes in the microirradiated nucleus.  相似文献   


18.
We compared dimer excision in viable and nonviable cells fractions separated from Escherichia coli B/r cultures exposed to ultraviolet (UV) irradiation. For cells grown on minimal medium with glycerol as a carbon source, both fractions from the irradiated (20 J/m2, 5% survival) culture excised 60 to 70% of the thymine dimers from prelabeled DNA within 120 min. This percentage was, within experimental error, the same as that obtained from unseparated cultures. When isolated viable and nonviable populations were given a second UV exposure (20 J/m2) both types of cells were again able to excise dimers. The UV survival curve for the isolated viable population indicates that these cells are no more sensitive to radiation than exponentially growing cells not previously exposed to UV. The extent of dimer excision after UV irradiation was also the same in viable and nonviable cells separated from cultures grown on a glucose minimal medium in which both populations excised about 85% of the dimers within 120 min. These results show that the extent of removal of pyrimidine dimer from deoxyribonucleic acid is not precisely correlated with survival of repair-competent bacterial cells after exposure to UV light.  相似文献   

19.
Summary We investigated the influence of aminoacidless treatments applied prior and after UV irradiation on survival, dimer excision, postirradiation DNA degradation, DNA synthesis and sedimentation profiles of parental DNA ofE. coli B/r Hcr+ cells. In dependence on the treatment applied, the fluence 50 J/m2 yielded distinctly different fractions of survivors within 0,03–85%. In all cases dimers were completely excised. The rate of DNA degradation was similar during a 30–40 min period after UV during which the bulk of dimers was excised. Degradation ceased, however, earlier in the prestarved cells than in exponentially growing ones; it was prolonged by aminoacidless postincubation. Sedimentation profiles of parental DNA did not differ during the whole period of dimer excision. In cells DNA synthesis was not restored for several hours after addition of amino acids. In cells addition of amino acids resulted in a fast resumption of DNA synthesis. We conclude that removal of dimers and repair of gaps were similar in all cases. We believe that aminoacidless treatments influence production and repair of damage to the sites of DNA replication. The treatment appears to prevent this damage when applied before UV irradiation, but interferes with its restoration when applied after UV irradiation. Consequently, the former treatment increases survival of cells while the latter produces an opposite effects.  相似文献   

20.
Noroviruses (previously Norwalk-like viruses) are the most common viral agents associated with food- and waterborne outbreaks of gastroenteritis. In the absence of culture methods for noroviruses, animal caliciviruses were used as model viruses to study inactivation by nonionizing (253.7-nm-wavelength [UV]) and ionizing (gamma) radiation. Here, we studied the respiratory feline calicivirus (FeCV) and the presumed enteric canine calicivirus (CaCV) and compared them with the well-studied bacteriophage MS2. When UV irradiation was used, a 3-log(10) reduction was observed at a fluence of 120 J/m(2) in the FeCV suspension and at a fluence of 200 J/m(2) for CaCV; for the more resistant phage MS2 there was a 3-log(10) reduction at a fluence of 650 J/m(2). Few or no differences were observed between levels of UV inactivation in high- and low-protein-content virus stocks. In contrast, ionizing radiation could readily inactivate MS2 in water, and there was a 3-log(10) reduction at a dose of 100 Gy, although this did not occur when the phage was diluted in high-protein-content stocks of CaCV or FeCV. The low-protein-content stocks showed 3-log(10) reductions at a dose of 500 Gy for FeCV and at a dose of 300 for CaCV. The inactivation rates for both caliciviruses with ionizing and nonionizing radiation were comparable but different from the inactivation rates for MS2. Although most FeCV and CaCV characteristics, such as overall particle and genome size and structure, are similar, the capsid sequences differ significantly, making it difficult to predict human norovirus inactivation. Adequate management of UV and gamma radiation processes for virus inactivation should limit public health risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号