首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Membrane lipids—phospholipids, fatty acids, and cholesterol—participate in thermal adaptation of ectotherms (bacteria, amphibians, reptiles, fishes) mainly via changes in membrane viscosity caused by the degree of fatty acids unsaturation, cholesterol/phospholipids ratio, and phospholipid composition. Studies of thermal adaptation of endotherms (mammals and birds) revealed the regulatory role of lipids in hibernation. Cholesterol and fatty acids participate in regulation of the parameters of torpor, gene expression, and activity of enzymes of lipid metabolism. Some changes in lipid metabolism during artificial and natural hypobiosis, namely, increased concentration of cholesterol and fatty acids in blood and decreased cholesterol concentration in neocortex, are analogous to those observed under stress conditions and coincide with mammalian nonspecific reactions to environmental agents. It is shown that the effects of artificial and natural hypobiosis on lipid composition of mammalian cell membranes are different. Changes in lipid composition cause changes in membrane morphology during mammalian hibernation. The effect of hypobiosis on lipid composition of membranes and cell organelles is specific and seems to be defined by the role of lipids in signaling systems. Comparative study of lipid metabolism in membranes and organelles during natural and artificial hypobiosis is promising for elucidation of adaptation of mammals to low ambient temperatures.  相似文献   

2.

1. 1.|Studies concerning the seasonal variation and the temperature acclimation of metabolism and their control in Amphibia are reviewed.

2. 2.|Both season and temperature acclimation affect the activities of the central and autonomic nervous systems.

3. 3.|These changes are mediated especially by alterations in the activity of the thyroid and through the autonomic nerves.

4. 4.|The fact that common control mechanisms are involved may explain some of the often observed metabolic interactions of season and temperature acclimation.

Author Keywords: Season; seasonal variation; geographic variation; temperature acclimation; capacity adaptation; metabolism; thyroid; central nervous system; autonomic nervous system; motor system; neurotransmitters; frog; Amphibia; Rana; Bufo  相似文献   


3.
Membrane function in mammalian hibernation   总被引:1,自引:0,他引:1  
For homeotherms the maintenance of a high, uniform body temperature requires a constant energy supply and food intake. For many small mammals, the loss of heat in winter exceeds energy supply, particularly when food is scarce. To survive, some animals have developed a capacity for adaptive hypothermia in which they lower their body temperature to a new regulatory set-point, usually a few degrees above the ambient. This process, generally known as hibernation, reduces the temperature differential, metabolic activity, as well as the energy demand, and thus facilitates survival during winter. Successful hibernation in mammals requires that the enzymatic processes are regulated in such a manner that metabolic balance is maintained at both the high body temperature of the summer-active animal (37 degrees C) and the low body temperature of the winter-torpid animal (approx. 5 degrees C). This means that the cellular membranes have thermal properties capable of maintaining a balanced metabolism at these extreme physiological temperatures. The available evidence indicates that, for some tissues, preparation for hibernation involves an alteration in the lipid composition and thermal properties of cellular membranes. Marked differences in the thermal response of cellular membranes have been observed on a seasonal basis and, in some membranes, differences in lipid composition have been associated with the torpid state. However, to date, no consistent changes in lipid composition which would account for, or explain, the changes in membrane thermal response, have been detected. An important point to emphasize is that the process of 'homeoviscous adaptation', which occurs in procaryotes and some poikilotherms during acclimation to low temperatures, is not a characteristic feature of most membranes of mammalian hibernators.  相似文献   

4.
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.  相似文献   

5.
Chromogranins, widespread in endocrine and nervous tissue, bind Ca2+   总被引:9,自引:0,他引:9  
F U Reiffen  M Gratzl 《FEBS letters》1986,195(1-2):327-330
The proteinaceous components of the secretory vesicle contents isolated from bovine adrenal medulla bind Ca2+ (number of binding sites, 152 +/- 52 nmol Ca2+ per mg protein; dissociation constant, 54 +/- 8 microM (n = 5)). SDS-polyacrylamide gel electrophoresis and 45Ca2+ binding of the proteins following their separation and blotting on nitrocellulose revealed that Ca2+ binds to chromogranins. Moreover, it was shown that the chromogranins, like other known Ca2+-binding proteins, can be specifically stained with a cationic carbocyanine dye. The Ca2+-binding function of the chromogranins described here, in conjunction with recent findings concerning Ca2+ transport across chromaffin vesicle membranes and the widespread distribution findings concerning Ca2+ transport across chromaffin vesicle membranes and the widespread distribution of chromogranins in many different endocrine and nerve cells, points to the general importance of these proteins in the metabolism of Ca2+.  相似文献   

6.
Morphine gives rise to a cascade of events in the nervous system affecting, among others, neurotransmitter metabolism. Tolerance develops for various effects shortly after administration of the drug. Also, physical dependence develops and can be demonstrated by precipitation of withdrawal reactions. Biochemical events in nervous tissue have been extensively studied during morphine treatment. This overview will focus upon brain protein metabolism since macromolecular events might be of importance for development of long-term effects, such as tolerance and physical dependence. Both dose-and time-dependent changes in brain protein synthesis and the syntheses of specific proteins have been demonstrated after morphine treatment, although methodological considerations are important. Different experimental models (animal and tissue culture models) are presented. It might be interesting to note that astroglial protein synthesis and the secretion of proteins to the extracellular medium are both changed after morphine treatment, these having been evaluated in astroglial enriched primary cultures and in brain tissue slices. The possibility is suggested that proteins released from astroglial cells participate in the communication with other cells, including via synaptic regions, and that such communication might be of significance in modifying the synaptic membranes during morphine intoxication.  相似文献   

7.
8.
Cholesterol and sphingomyelin are both important plasma membrane constituents in cells. It is now becoming evident that these two lipid classes affect each other's metabolism in the cell to an extent that was not previously appreciated. It is the aim of this review to present recent data in the literature concerning both molecular and membrane properties of the two lipid classes, how they interact in membranes (both biological and model), and the consequences their mutual interaction have on different functional and metabolic processes in cells and lipoproteins.  相似文献   

9.
The relationship between the neutral lipid and phospholipid metabolism and some structure-function peculiarities of regenerating rat liver endoplasmic reticulum membranes (13 hours after surgery, i.e., corresponding to the G1-period of the cell cycle) was studied. There was an increase in the degree of the endoplasmic reticulum membrane development and the nonesterified fatty acid (NFA) and triglyceride (TG) content in regenerating rat liver microsomes. The relative specific radioactivity of neutral lipid and phospholipid fractions in regenerating rat liver microsomes was lower than in control animals, presumably due to the high rate of the microsomal lipid exchange in the regenerating liver with other cell organelles. The changes in the lipid content and rate of their metabolism in the regenerating rat liver were associated with the increase in the membrane microviscosity and the decrease in the activity of the membrane-bound enzyme (glucose-6-phosphatase). The differences in the time-dependent changes in the synthesis and metabolism of lipids in the NFA and TG fractions may be regarded as an endogenous factor determining the structure-function peculiarities of endoplasmic reticulum membranes.  相似文献   

10.
Subsurface cisterns (SSC's) are large, flattened, membrane-limited vesicles which are very closely apposed to the inner aspect of the plasma membranes of nerve cell bodies and the proximal parts of their processes. They occur in a variety of vertebrate and invertebrate neurons of both the peripheral and central nervous systems, but not in the surrounding supporting cells. SSC's are sheet-like in configuration, having a luminal depth which may be less than 100 A and a breadth which may be as much as several microns. They are separated from the plasmalemma by a light zone of ~50 to 80 A which sometimes contains a faint intermediate line. Flattened, agranular cisterns resembling SSC's, but structurally distinct from both typical granular endoplasmic reticulum (ER) and from Golgi membranes, also occur deep in the cytoplasm of neurons. It is suggested that membranes which are closely apposed may interact, resulting in alterations in their respective properties. The patches of neuronal plasmalemma associated with subsurface cisterns may, therefore, have special properties because of this association, resulting in a non-uniform neuronal surface. The possible significance of SSC's in relation to neuronal electrophysiology and metabolism is discussed.  相似文献   

11.
On the basis of the comparative approach and three models of metabolism (endothermic and ectothermic vertebrates, body mass, and mammalian development), we suggest that a few common cellular processes, linked either directly or indirectly to membranes, consume the majority of energy used by most organisms; that membranes act as pacemakers of metabolism through changes in lipid composition, altering membrane characteristics and the working environment of membrane proteins--specifically, that changes in the membrane environment similarly affect the molecular activities (specific rates of activity) of membrane-bound proteins; and that polyunsaturation of membranes increases whereas monounsaturation decreases the activity of membrane proteins. Experiments designed to test this theory using the sodium pump support this supposition. Potential mechanisms considered include fluidity, electrical fields, and related surface area requirements of lipids. In considering the evolution of endothermy in mammals, for example, if the first mammals were small, possibly nocturnal and active organisms, all these factors would favour increased polyunsaturation of membranes. Such changes (from monounsaturated to polyunsaturated membranes) would allow membranes to set the pace of metabolism in the evolution of endothermy.  相似文献   

12.
Proper functioning of intracellular membranes is critical for many cellular processes. A key feature of membranes is their ability to adapt to changes in environmental conditions by adjusting their composition so as to maintain constant biophysical properties, including fluidity and flexibility. Similar changes in the biophysical properties of membranes likely occur when intracellular processes, such as vesicle formation and fusion, require dramatic changes in membrane curvature. Similar modifications must also be made when nuclear pore complexes (NPCs) are constructed within the existing nuclear membrane, as occurs during interphase in all eukaryotes. Here we report on the role of the essential nuclear envelope/endoplasmic reticulum (NE/ER) protein Brl1 in regulating the membrane composition of the NE/ER. We show that Brl1 and two other proteins characterized previously—Brr6, which is closely related to Brl1, and Apq12—function together and are required for lipid homeostasis. All three transmembrane proteins are localized to the NE and can be coprecipitated. As has been shown for mutations affecting Brr6 and Apq12, mutations in Brl1 lead to defects in lipid metabolism, increased sensitivity to drugs that inhibit enzymes involved in lipid synthesis, and strong genetic interactions with mutations affecting lipid metabolism. Mutations affecting Brl1 or Brr6 or the absence of Apq12 leads to hyperfluid membranes, because mutant cells are hypersensitive to agents that increase membrane fluidity. We suggest that the defects in nuclear pore complex biogenesis and mRNA export seen in these mutants are consequences of defects in maintaining the biophysical properties of the NE.  相似文献   

13.
Membrane lipid composition of cells in the nervous system is unique and displays remarkable diversity. Cholesterol metabolism and homeostasis in the central nervous system and their role in neuronal function represent important determinants in neuropathogenesis. The serotonin1A receptor is an important member of the G-protein coupled receptor superfamily, and is involved in a variety of cognitive, behavioral, and developmental functions. We report here, for the first time, that the ligand binding function of human serotonin1A receptors exhibits an increase in membranes isolated from cholesterol-depleted neuronal cells. Our results gain pharmacological significance in view of the recently described structural evidence of specific cholesterol binding site(s) in GPCRs, and could be useful in designing better therapeutic strategies for neurodegenerative diseases associated with GPCRs.  相似文献   

14.
In the present study, the glucose concentration in the haemolymph and glycogen levels were determined in the various body parts of the Helix aspersa snail after feeding lettuce ad libitum and after various periods of starvation. To characterize the effect of starvation on nucleotidase activity, enzyme assays were performed on membranes of the nervous ganglia and digestive gland. Results demonstrated the maintenance of the haemolymph glucose concentration for up to 30 days of starvation, probably due to the consumption of glycogen from the mantle. In the nervous ganglia, depletion of glycogen occurs progressively during the different periods of starvation. No significant changes were observed on ATP and ADP hydrolysis in the membranes of nervous ganglia and no alterations in Ca2+ -ATPase and Mg2+ -ATPase occurred in the membranes of the digestive gland of H. aspersa during the different periods of starvation. Although there were no changes in the enzyme activities during starvation, they could be modulated by effectors in situ with concomitant changes in products/reactants during starvation.  相似文献   

15.
Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures.  相似文献   

16.
Genetic hypertension is associated with alterations in lipid metabolism, membrane lipid composition and membrane-protein function. 2-Hydroxyoleic acid (2OHOA) is a new antihypertensive molecule that regulates the structure of model membranes and their interaction with certain peripheral signalling proteins in vitro. While the effect of 2OHOA on elevated blood pressure is thought to arise through its influence on signalling proteins, its effects on membrane lipid composition remain to be assessed. 2OHOA administration altered the lipid membrane composition of hypertensive and normotensive rat plasma membranes, and increased the fluidity of reconstituted liver membranes from hypertensive rats. In spontaneously hypertensive rats (SHR), treatment with 2OHOA increased the cholesterol and sphingomyelin content while decreasing that of phosphatidylserine-phosphatidylinositol lipids. In addition, monounsaturated fatty acid levels increased as well as the propensity of reconstituted membranes to form HII-phases. These data suggest that 2OHOA regulates lipid metabolism that is altered in hypertensive animals, and that it affects the structural properties of liver plasma membranes in SHR. These changes in the structural properties of the plasma membrane may modulate the activity of signalling proteins that associate with the cell membrane such as the Galphaq/11 protein and hence, signal transduction.  相似文献   

17.
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron–glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid–protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid β peptide in Alzheimer’s disease, huntingtin in Huntington’s disease, α-synuclein in Parkinson’s disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.  相似文献   

18.
Our experiments were designed to test the hypotheses that dietary lipids can affect whole-animal physiological processes in a manner concordant with changes in the fluidity of cell membranes. We measured (1) the lipid composition of five tissues, (2) body temperatures selected in a thermal gradient (T(sel)), (3) the body temperature at which the righting reflex was lost (critical thermal minimal [CTMin]), and (4) resting metabolic rate (RMR) at three body temperatures in desert iguanas (Dipsosaurus dorsalis) fed diets enriched with either saturated or unsaturated fatty acids. The composition of lipids in tissues of the lizards generally reflected the lipids in their diets, but the particular classes and ratios of fatty acids varied among sampled organs, indicating the conservative nature of some tissues (e.g., brain) relative to others (e.g., depot fat). Lizards fed the diet enriched with saturated fatty acids selected warmer nighttime body temperatures than did lizards fed a diet enriched with unsaturated fatty acids. This difference is concordant with the hypothesis that the composition of dietary fats influences membrane fluidity and that ectotherms may compensate for such changes in fluidity by selecting different body temperatures. The CTMin of the two treatment groups was indistinguishable. This may reflect the conservatism of some tissues (e.g., brain) irrespective of diet treatment. The RMR of the saturated treatment group nearly doubled between 30 degrees and 40 degrees C. Here, some discrete membrane domains in the lizards fed the saturated diet may have been in a more-ordered phase at 30 degrees C and then transformed to a less-ordered phase at 40 degrees C. In contrast, the RMR of the unsaturated treatment group exhibited temperature independence in metabolic rate from 30 degrees to 40 degrees C. Perhaps the unsaturated diet resulted in membranes that developed a higher degree of disorder (i.e., a certain phase) at a lower temperature than were membranes of lizards fed the saturated diet. Our study demonstrates links between dietary fats and whole-animal physiology; however, the mechanistic basis of these links, and the general knowledge of lipid metabolism in squamate reptiles, remain poorly understood and warrant further study.  相似文献   

19.
By means of morphological methods changes in the wall of the stomach central part and in that of the bile bladder have been studied in 15 patients after a remote vagotomy (in 7-17 years). Material of biopsies and resections has been investigated. In the wall of the organs in question focal and diffuse mono- and plasmocytic infiltrates, leucocytic invasion of the mucous membrane epithelium, microerosions, microfocal hemorrhages in the external layers of the muscular sheath have been revealed. Inflammatory-degenerative and dystrophic changes are observed in the intramural ganglia, in large and small fasciculi of the muscular-intestinal nervous plexuses. In the tissues of the organs studied there are no myelin fibers, that are ++pre-ganglial and receptor conductors. The degeneration of these fibers after vagotomy and loss of connections in the organs investigated with the CNS are supposed to result in essential changes not only of the nervous trophic of tissues in all membranes and sheaths, but bring about changes in the intramural nervous apparatus itself. These changes, in their turn, cause imbalance + in the neurogumoral regulation and can be considered as the base of a number of postvagotomic structural-functional disturbances.  相似文献   

20.
Insects’ fat bodies are responsible for nutrient storage and for a significant part of intermediary metabolism. Thus, it can be expected that the structure and content of the fat body will adaptively change, if an insect is going through different life stages. Bumblebee queens belong to such insects as they dramatically change their physiology several times over their lives in relation to their solitary overwintering, independent colony foundation stage, and during the colony life-cycle ending in the senescent stage. Here, we report on changes in the ultrastructure and lipid composition of the peripheral fat body of Bombus terrestris queens in relation to seasonal changes in the queens’ activity. Six life stages are defined and evaluated in particular: pharate, callow, before and after hibernation, egg-laying, and senescence. Transmission electron microscopy revealed that the fat body contained two main cell types–adipocytes and oenocytes. Only adipocytes reveal important changes related to the life phase, and mostly the ration between inclusion and cytoplasm volume varies among particular stages. Both electron microscopy and chemical analyses of lipids highlighted seasonal variability in the quantity of the stored lipids, which peaked prior to hibernation. Triacylglycerols appeared to be the main energy source during hibernation, while the amount of glycogen before and after hibernation remained unchanged. In addition, we observed that the representation of some fatty acids within the triacylglycerols change during the queen’s life. Last but not least, we show that fat body cell membranes do not undergo substantial changes concerning phospholipid composition in relation to overwintering. This finding supports the hypothesis that the cold-adaptation strategy of bumblebee queens is more likely to be based on polyol accumulation than on the restructuring of lipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号