首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
RNase L is activated by the binding of unusual 2',5'-linked oligoadenylates (2-5A) and acts as the effector enzyme of the 2-5A system, an interferon-induced anti-virus mechanism. Efforts have been made to understand the 2-5A binding mechanism, not only for scientific interests but also for the prospects that the understanding of such mechanisms lead to new remedies for viral diseases. We have recently elucidated the crystal structure of the 2-5A binding ankyrin repeat domain of human RNase L complexed with 2-5A. To determine the contributions of amino acid residues surrounding the 2-5A binding site, point mutants and a deletion mutant were designed based on the crystal structure. These mutant proteins were analyzed for their interaction with 2-5A using a steady-state fluorescence technique. In addition, full-length RNase L mutants were tested for their activation by 2-5A. The results reveal that pi-pi stacking interactions of Trp60 and Phe126, electrostatic interactions of Lys89 and Arg155, and hydrogen bonding by Glu131 make crucial contributions to 2-5A binding. It was also found that the crystal structure of the ankyrin repeat domain L.2-5A complex accurately portrays the 2-5A binding mode in full-length RNase L.  相似文献   

3.
RNase L, a key enzyme in the host defense system, is activated by the binding of 2'-5'-linked oligoadenylates (2-5A) to the N-terminal ankyrin repeat domain, which causes the inactive monomer to form a catalytically active homodimer. We focused on the structural changes of human RNase L as a result of interactions with four different activators: natural 2-5 pA(4) and three tetramers with 3'-end AMP units replaced with ribo-, arabino- and xylo-configured phosphonate analogs of AMP (pA(3)X). The extent of the RNase L dimerization and its cleavage activity upon binding of all these activators were similar. A drop-coating deposition Raman (DCDR) spectroscopy possessed uniform spectral changes upon binding of all of the tetramers, which verified the same binding mechanism. The estimated secondary structural composition of monomeric RNase L is 44% α-helix, 28% β-sheet, 17% β-turns and 11% of unordered structures, whereas dimerization causes a slight decrease in α-helix and increase in β-sheet (ca. 2%) content. The dimerization affects at least three Tyr, five Phe and two Trp residues. The α-β structural switch may fix domain positions in the hinge region (residues ca. 336-363) during homodimer formation.  相似文献   

4.
5.
Crystal structure of a 12 ANK repeat stack from human ankyrinR   总被引:6,自引:0,他引:6  
Ankyrins are multifunctional adaptors that link specific proteins to the membrane-associated, spectrin- actin cytoskeleton. The N-terminal, 'membrane-binding' domain of ankyrins contains 24 ANK repeats and mediates most binding activities. Repeats 13-24 are especially active, with known sites of interaction for the Na/K ATPase, Cl/HCO(3) anion exchanger, voltage-gated sodium channel, clathrin heavy chain and L1 family cell adhesion molecules. Here we report the crystal structure of a human ankyrinR construct containing ANK repeats 13-24 and a portion of the spectrin-binding domain. The ANK repeats are observed to form a contiguous spiral stack with which the spectrin-binding domain fragment associates as an extended strand. The structural information has been used to construct models of all 24 repeats of the membrane-binding domain as well as the interactions of the repeats with the Cl/HCO(3) anion exchanger and clathrin. These models, together with available binding studies, suggest that ion transporters such as the anion exchanger associate in a large central cavity formed by the ANK repeat spiral, while clathrin and cell adhesion molecules associate with specific regions outside this cavity.  相似文献   

6.
The N-terminal ankyrin repeat domain of the 2'-5'-linked oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, has been crystallized by the hanging-drop vapor diffusion method in the presence of 2-5 Angstroms. The crystals belong to an orthorhombic space group P2(1)2(1)2(1) with cell dimensions of a = 63.11 Angstroms, b = 73.03 Angstroms, and c = 82.64 Angstroms. There is one molecule per asymmetric unit. The crystals diffract to at least 2.1 Angstroms resolution using synchrotron radiation and are suitable for X-ray structure analysis at high resolution.  相似文献   

7.
8.
TRPV channels are important polymodal integrators of noxious stimuli mediating thermosensation and nociception. An ankyrin repeat domain (ARD), which is a common protein-protein recognition domain, is conserved in the N-terminal intracellular domain of all TRPV channels and predicted to contain three to four ankyrin repeats. Here we report the first structure from the TRPV channel subfamily, a 1.7 A resolution crystal structure of the human TRPV2 ARD. Our crystal structure reveals a six ankyrin repeat stack with multiple insertions in each repeat generating several unique features compared with a canonical ARD. The surface typically used for ligand recognition, the ankyrin groove, contains extended loops with an exposed hydrophobic patch and a prominent kink resulting from a large rotational shift of the last two repeats. The TRPV2 ARD provides the first structural insight into a domain that coordinates nociceptive sensory transduction and is likely to be a prototype for other TRPV channel ARDs.  相似文献   

9.
10.
Ribonuclease L (RNase L) is a latent endoribonuclease in an evolutionarily ancient interferon-regulated dsRNA-activated antiviral pathway. 2'-5' oligoadenylate (2-5A), the product of dsRNA-activated oligoadenylate synthetases (OASes), binds to ankyrin repeats near the amino terminus of RNase L, initiating a series of conformational changes that result in the activation of the endoribonuclease. A phylogenetically conserved RNA structure within group C enteroviruses inhibits the endoribonuclease activity of RNase L. In this study we report the mechanism by which group C enterovirus RNA inhibits RNase L. Viral RNA did not affect 2-5A binding to RNase L. Rather, the viral RNA inhibited the endoribonuclease domain. We used purified RNase L, purified 2-5A, and an RNA substrate with a 5' fluorophore and 3' quencher in FRET assays to measure inhibition of RNase L activity by the viral RNA. The group C enterovirus RNA was a competitive inhibitor of the endoribonuclease with a K(i) of 34 nM. Consistent with the kinetic profile of a competitive inhibitor, the viral RNA inhibited the constitutively active endoribonuclease domain of RNase L. We call this viral RNA the RNase L competitive inhibitor RNA (RNase L ciRNA).  相似文献   

11.
The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG–Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG–Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG–Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.  相似文献   

12.
RNase L is part of the innate immune response to viral infection. It is activated by a small oligonucleotide (2–5A) whose synthesis is initiated as part of the interferon response. Binding of 2–5A to the N-terminal regulatory region, the ANK domain, of RNase L activates its ribonuclease activity and results in cleavage of RNA in the cell, which ultimately leads to apoptosis of the infected cell. The mechanism by which 2–5A activates the ribonuclease activity of RNase L is currently unclear but 2–5A has been shown to induce dimerization of RNase L. To investigate the importance of dimerization of RNase L, we developed a 15 kDa dimerization-inducing protein domain that was fused to the N-terminus of RNase L. From these studies we provide direct evidence that dimerization of RNase L occurs at physiologically relevant protein concentrations and correlates with activation of ribonuclease activity. We also show that the binding of 2–5A to RNase L promotes dimerization of the ANK domain and suggest how this could transmit a signal to the rest of the protein to activate ribonuclease activity. Finally, we show that the dimerization-inducing domain can be used as a general fusion partner to aid in protein expression and purification.  相似文献   

13.
14.
Vertebrate ankyrin-B and ankyrin-G exhibit divergent subcellular localization and function despite their high sequence and structural similarity and common origin from a single ancestral gene at the onset of chordate evolution. Previous studies of ankyrin family diversity have focused on the C-terminal regulatory domain. Here, we identify an ankyrin-B-specific linker peptide connecting the ankyrin repeat domain to the ZU52-UPA module that inhibits binding of ankyrin-B to membrane protein partners E-cadherin and neurofascin 186 and prevents association of ankyrin-B with epithelial lateral membranes as well as neuronal plasma membranes. The residues of the ankyrin-B linker required for autoinhibition are encoded by a small exon that is highly divergent between ankyrin family members but conserved in the ankyrin-B lineage. We show that the ankyrin-B linker suppresses activity of the ANK repeat domain through an intramolecular interaction, likely with a groove on the surface of the ANK repeat solenoid, thereby regulating the affinities between ankyrin-B and its binding partners. These results provide a simple evolutionary explanation for how ankyrin-B and ankyrin-G have acquired striking differences in their plasma membrane association while maintaining overall high levels of sequence similarity.  相似文献   

15.
Human ankyrin repeat and suppressor of cytokine signaling box protein 9 (hASB9) is a specific substrate-recognition subunit of an elongin C-cullin-SOCS box E3 ubiquitin ligase complex. It recognizes its substrate, brain type creatine kinase (CKB), using the ankyrin repeat domain; and facilitates the polyubiquitination of CKB to mediate proteasomal degradation through the SOCS box domain. HASB9-2 is an isoform of hASB9 that contains one ankyrin repeat domain. In this study, the crystal structure of hASB9-2 is shown at 2.2-Å resolution using molecular replacement. Overall, hASB9-2 forms a slightly curved arch with a characteristic L-shaped cross-section. Amino acid substitution analysis based on docking experiments revealed that His103 and Phe107 in hASB9-2 are essential for binding to CKB. Analysis of truncation mutants demonstrated that the first six ankyrin repeats along with the N-terminal region of hASB9-2 contribute to the interaction with CKB.  相似文献   

16.
17.
Manipulation of protein solubility is important for many aspects of protein design and engineering. Previously, we designed a series of consensus ankyrin repeat proteins containing one, two, three and four identical repeats (1ANK, 2ANK, 3ANK and 4ANK). These proteins, particularly 4ANK, are intended for use as a universal scaffold on which specific binding sites can be constructed. Despite being well folded and extremely stable, 4ANK is soluble only under acidic conditions. Designing interactions with naturally occurring proteins requires the designed protein to be soluble at physiological pH. Substitution of six leucines with arginine on exposed hydrophobic patches on the surface of 4ANK resulted in increased solubility over a large pH range. Study of the pH dependence of stability demonstrated that 4ANK is one of the most stable ankyrin repeat proteins known. In addition, analogous leucine to arginine substitutions on the surface of 2ANK allowed the partially folded protein to assume a fully folded conformation. Our studies indicate that replacement of surface-exposed hydrophobic residues with positively charged residues can significantly improve protein solubility at physiological pH.  相似文献   

18.
A primer on ankyrin repeat function in TRP channels and beyond   总被引:1,自引:0,他引:1  
Transient receptor potential (TRP) channels are rapidly gaining attention as important receptors and transducers of diverse sensory and environmental cues. Recent progress in the field has provided new insights into the structure and function of the ankyrin repeat motifs present in the N-terminal cytosolic domain of many TRP channels. The topics addressed in this Highlight include the structural features of canonical ankyrin repeats, new clues into the functions these repeats perform in cells, and how this information can be applied to develop further experiments on TRP channels and other proteins containing ankyrin repeats.  相似文献   

19.
Nakanishi M  Goto Y  Kitade Y 《Proteins》2005,60(1):131-138
RNase L is responsible for the 2-5A host defense system, an RNA degradation pathway present in cells of higher vertebrates that functions in both the antiviral and anticellular activities of interferon. The activity of RNase L is tightly regulated and is exerted only in the presence of 2-5A. The postulated mechanism of its regulation is as follows: the N-terminal half ankyrin-repeat domain masks the C-terminal half nuclease domain in the absence of 2-5A. On binding 2-5A at the ankyrin-repeat domain, RNase L forms a homodimer and removes the ankyrin-repeat domain from the nuclease domain to become the active form. A conformational change in the ankyrin-repeat domain is a key step in this hypothetical mechanism, but there is as yet no evidence for such a change. To clarify the events induced by 2-5A binding, we established procedures for expression and purification of the ankyrin-repeat domain of human RNase L. Fluorescence spectra of the protein showed clear difference in the presence and absence of 2-5A. The alterations in the spectra supported conformational changes of the protein. Time-resolved anisotropy measurements indicated that 2-5A binding led to a significant decrease in the rotational radius of the protein. In addition, 2-5A provided the domain with resistance to protease digestion as a result of a conformational change. These results indicated that the ankyrin-repeat domain of RNase L constricts its structure by binding of 2-5A. This observation suggests a revised model of the 2-5A-induced activation of RNase L.  相似文献   

20.
Molecular cloning of cardiac troponin I-interacting kinase (TNNI3K), a novel cardiac-specific protein kinase containing seven N-terminal ankyrin (ANK) repeats followed by a protein kinase domain and a C-terminal Ser-rich domain, has previously been reported. In the present study, we show that the C-terminal functional region of TNNI3K negatively regulates the kinase activity, and the N-terminal ANK domain is necessary for autophosphorylation. An in vitro kinase assay shows that TNNI3K exhibits dual-specific kinase activity and forms dimers or oligomers that may be necessary for its activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号