首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extracts of rat skeletal muscle contain substances that enhance the development of choline acetyltransferase (ChAT) in the cholinergic human neuroblastoma cell line LA-N-2. The ChAT enhancing activity in muscle extract was purified to homogeneity by preparative gel electrophoresis and reverse-phase HPLC. The active factor is biochemically and immunologically identical to ChAT development factor, (CDF), the skeletal muscle factor that enhances ChAT activity in enriched cultures of embryonic rat motoneurons and rescues motoneurons from naturally occurring cell death in vivo. CDF increases the specific ChAT activity of LA-N-2 cells fivefold after 6 days in culture, but does not affect their growth or metabolic activity. Basic fibroblast growth factor also increases ChAT activity in LA-N-2 cells and its effect is additive with that of CDF. In contrast, neither insulin-like growth factor-1, epidermal growth factor, nor nerve growth factor affected the ChAT activity of LA-N-2 cells. Our study demonstrates for the first time that CDF can directly affect the development of neuronal properties in a homogeneous population of cells, and that the effects of CDF are separate from those of other types of trophic factors.  相似文献   

2.
J C Martinou  I Martinou  A C Kato 《Neuron》1992,8(4):737-744
We present evidence that the cholinergic differentiation factor (CDF), originally purified from cardiac and skeletal muscle cell-conditioned medium and found to be identical to leukemia inhibitory factor (LIF), promotes survival of embryonic day 14 rat motoneurons in vitro. These neurons were retrogradely labeled with the fluorescent tracer Dil and enriched on a density gradient or purified to homogeneity by fluorescence-activated cell sorting. Subnanomolar concentrations of CDF/LIF supported the survival of 85% of the motoneurons that would have died between days 1 and 4 of culture. The enhanced survival was accompanied by a 4-fold increase in choline acetyltransferase (ChAT) activity per culture. CDF/LIF also increased ChAT activity in dorsal spinal cord cultures, but had no detectable effect on ChAT levels in septal or striatal neuronal cultures. For comparison, other neurotrophic molecules were tested on motoneuron cultures. Ciliary neurotrophic factor had effects on motoneuron survival similar to those of CDF/LIF, whereas basic fibroblast growth factor was somewhat less effective. Nerve growth factor had no effect on the survival of rat motoneurons.  相似文献   

3.
Rat skeletal muscle contains a 22 kd polypeptide that increases the level of choline acetyltransferase (ChAT) activity in cultures of embryonic rat spinal cord neurons and has been purified to homogeneity. The application of this factor, ChAT development factor or CDF, to developing chick embryos during the period of naturally occurring motoneuron cell death significantly increased the survival of motoneurons but did not affect the survival of dorsal root ganglion neurons or sympathetic preganglionic neurons (column of Terni). These results provide the first demonstration that an isolated, skeletal muscle-derived molecule can selectively enhance the survival of motoneurons in vivo and suggest that CDF may function in vivo to regulate the survival and development of motoneurons.  相似文献   

4.
The effect of muscle extract on cell survival and choline acetyltransferase (ChAT) activity in cultures of enriched cholinergic neurones from 7-day chick embryo spinal cord was examined. When neurones were grown on hydrated collagen gels, considerable cell survival and ChAT activity were obtained even in the absence of tissue extract. These parameters were stimulated twofold in the presence of skeletal muscle extract but not liver or skin extracts. The cholinergic neurotrophic activity was found to be heat- and trypsin-sensitive, nondialysable, and to act in the virtual absence of glial cells. These data are consistent with a retrogradely acting motor neurone trophic activity.  相似文献   

5.
The effects of skeletal muscle extract on the development of CAT, ACh synthesis, high affinity choline uptake, and AChE activities were studied in dissociated ventral spinal cord cultures prepared from 14-day gestational rat embryos. In the absence of muscle extract, the development of CAT and AChE follow biphasic time courses in which they show initial declines followed by periods of steadily increasing activity. In contrast, ACh synthesis and high affinity choline uptake both gradually increase throughout the entire culture period. The presence of muscle extract both prevents the initial decline of CAT and AChE as well as stimulates the rates of development of all four cholinergic markers; however, the degrees and time courses of stimulation differ markedly. The effects of muscle extract on the kinetic and pharmacological properties of ACh synthesis and choline uptake in rat ventral cord cultures were also investigated. Cells treated with muscle extract for 2 days express both high affinity (Km = 1.6 microM) and low affinity (Km = 22 microM) choline uptake mechanisms. Control cells, on the other hand, express only low affinity uptake at this stage but develop a high affinity uptake mechanism by Day 7. During this time both ACh synthesis and high affinity choline uptake become increasingly sensitive to inhibition by hemicholinium-3. These results demonstrate that skeletal muscle factors enhance the development of cholinergic properties in embryonic spinal cord cultures. However, differences in sensitivity to muscle extract concentration, time courses of development, and degrees of stimulation suggest that these changes may involve distinct cellular mechanisms which are differentially affected by skeletal muscle factors.  相似文献   

6.
Sweat glands in rat footpads contain a neuronal differentiation activity that switches the phenotype of sympathetic neurons from noradrenergic to cholinergic during normal development in vivo. Extracts of developing and adult sweat glands induce changes in neurotransmitter properties in cultured sympathetic neurons that mimic those observed in vivo. We have characterized further the factors present in the extract and compared their properties to those of known cholinergic factors. When assayed on cultured rat sympathetic neurons, the major activities in footpad extracts from postnatal day 21 rat pups that induce choline acetyltransferase (ChAT) and vasoactive intestinal peptide (VIP) and reduce catecholamines and neuropeptide Y (NPY) are associated with a soluble protein of 22-26 x 10(3) M(r) and a pI of 5.0. These properties are similar to those of ciliary neurotrophic factor (CNTF). Moreover, the purified fraction from footpads has ciliary neurotrophic activity. Antibodies to CNTF that immunoprecipitate all differentiation activity from sciatic nerve extracts, a rich source of CNTF, immunoprecipitate 80% of the cholinergic activity in the footpad extracts, 50% of the VIP and 20% of the NPY activities. Neither CNTF protein nor CNTF mRNA, however, can be detected in immunoblot and northern analysis of footpads even though both CNTF protein and mRNA are evident in sciatic nerve. CNTF-immunoreactivity is associated with a sparse plexus of sensory fibers in the footpad but not with sweat glands or the Schwann cells associated with them. In addition, in situ hybridization studies with oligonucleotide probes failed to reveal CNTF mRNA in sweat glands. Comparison of the sweat gland differentiation activity with the cholinergic differentiation factor from heart cells (CDF; also known as leukemia inhibitory factor or LIF) suggests that most of the cholinergic activity in foot pads is biochemically distinct from CDF/LIF. Further, antibodies that block the activity of CDF/LIF purified from heart-cell-conditioned medium do not block the ChAT-inducing activity present in footpad extracts of postnatal day 8 animals. A differentiation factor isolated from skeletal muscle did not induce cholinergic properties in sympathetic neuron cultures and therefore is unlikely to be the cholinergic differentiation factor produced by sweat glands. Taken together, our data suggest that there are at least two differentiation molecules present in the extracts and that the major cholinergic activity obtained from footpads is related to, but distinct from, CNTF. The second factor remains to be characterized. In addition, CNTF associated with sensory fibers may make a minor contribution to the cholinergic inducing activity present in the extract.  相似文献   

7.
Rat skeletal muscle cells release in culture a macromolecule which stimulates by 25-100 fold the development of choline acetyltransferase (CAT) in cultures of new-born rat sympathetic neurons. This "cholinergic factor" impaired the development of three norepinephrine synthesizing enzymes and of acetylcholinesterase (AChE) in these cultures. The 16S form of AChE failed to develop in cultures grown with the factor, but amounted to 30-40% in 3-week old cultures grown in its absence. Using the development of CAT activity in sympathetic neuron cultures as an assay, the cholinergic factor has been partially purified in 6 steps, and its hydrodynamic parameters determined. The effects of this factor on sympathetic neurotransmitter choice were qualitatively reproduced by 1-10 mM Na butyrate. The cholinergic factor increased CAT activity and decreased AChE in neuron cultures from new-born rat nodose ganglia. The factor also stimulated CAT activity in rat embryo (E14) spinal cord cultures, but stimulated the development of AChE in these cultures.  相似文献   

8.
A series of in vivo studies have been carried out using the chick embryo to address several critical questions concerning the biological, and to a lesser extent, the biochemical characteristics of a putative avian muscle-derived trophic agent that promotes motoneuron survival in vivo. A partially purified fraction of muscle extract was shown to be heat and trypsin sensitive and rescued motoneurons from naturally occurring cell death in a dose-dependent fashion. Muscle extract had no effect on mitotic activity in the spinal cord and did not alter cell number when administered either before or after the normal cell death period. The survival promoting activity in the muscle extract appears to be developmentally regulated. Treatment with muscle extract during the cell death period did not permanently rescue motoneurons. The motoneuron survival-promoting activity found in skeletal muscle was not present in extracts from a variety of other tissues, including liver, kidney, lung, heart, and smooth muscle. Survival activity was also found in extracts from fetal mouse, rat, and human skeletal muscle. Conditioned medium derived from avian myotube cultures also prevented motoneuron death when administered in vivo to chick embryos. Treatment of embryos in ovo with muscle extract had no effect on several properties of developing muscles. With the exception of cranial motoneurons, treatment with muscle extract did not promote the survival of several other populations of neurons in the central and peripheral nervous system that also exhibit naturally occurring cell death. Initial biochemical characterization suggests that the activity in skeletal muscle is an acidic protein between 10 and 30 kD. Examination of a number of previously characterized growth and trophic agents in our in vivo assay have identified several molecules that promote motoneuron survival to one degree or another. These include S100β, brain-derived neurotrophic factor (BDNF), neurotrophin 4/5 (NT-4/5), ciliary neurotrophic factor (CNTF), transforming growth factor β (TGFβ), platelet-derived growth factor-AB (PDGF-AB), leukemia inhibitory factor (CDF/LIF), and insulin-like growth factors I and II (IGF). By contrast, the following agents were ineffective: nerve growth factor (NGF), neurotrophin-3 (NT3), epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF, bFGF), and the heparin-binding growth-associated molecule (HB-GAM). Of those agents that were effective, CDF/LIF, IGF-1 and -2, BDNF, and TGF are reported to be expressed in developing or adult muscle. Studies are underway to determine whether the survival activity found in avian muscle extract can be accounted for by one or more of these growth factors. Of all the tissue extracts and purified proteins tested here, only the neurotrophins—NGF, NT-3, and BDNF (but not NT-4/5)—rescured sensory neurons from naturally occurring cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Regulation of cholinergic expression in cultured spinal cord neurons   总被引:1,自引:0,他引:1  
Factors regulating development of cholinergic spinal neurons were examined in cultures of dissociated embryonic rat spinal cord. Levels of choline acetyltransferase (CAT) activity in freshly dissociated cells decreased rapidly, remained low for the first week in culture, and then increased. The decrease in enzyme activity was partially prevented by increased cell density or by treatment with spinal cord membranes. CAT activity was also stimulated by treatment with MANS, a molecule solubilized from spinal cord membranes. The effects of MANS were greatest in low-density cultures and in freshly plated cells, suggesting that the molecule may substitute for the effects of elevated density and cell-cell contact. CAT activity in ventral (motor neuron-enriched) spinal cord cultures was similarly regulated by elevated density or treatment with MANS, whereas enzyme activity was largely unchanged in mediodorsal (autonomic neuron-enriched) cultures under these conditions. These observations suggest that development of cholinergic motor neurons and autonomic neurons are not regulated by the same factors. Treatment of ventral spinal cord cultures with MANS did not increase the number of cholinergic neurons detected by immunocytochemistry with a monoclonal CAT antibody, suggesting that MANS did not increase motor neuron survival but rather stimulated levels of CAT activity per neuron. These observations indicate that development of motor neurons can be regulated by cell-cell contact and that the MANS factor may mediate the stimulatory effects of cell-cell contact on cholinergic expression.  相似文献   

10.
The hypothesis that peripheral, skeletal muscle tissue contains a trophic factor supporting central neurons has recently been investigated in vitro by supplementing the culture medium of spinal cord neurons with muscle extracts and fractions of extract. We extended these studies asking whether or not a trophic factor is present in peripheral nerves, the connecting link between muscle and central neurons via which factors may be translocated from muscle to neurons by the retrograde transport system. Lumbar, 8-day-old chick spinal cords were dissociated into single cells and then cultured in the presence of peripheral nerve extract. Cytosine arabinoside was added to inhibit proliferation of nonneuronal cells. In the presence of nerve extract, spinal cord neurons survived for more than a month, extended numerous neurites, and showed activity of choline acetyltransferase. In the absence of extract, neurons attached and survived for a few days but then died subsequently in less than 10 days. Neurite outgrowth did not occur in the absence of extract. Withdrawal of extract from the medium of established neuronal cultures caused progressive loss of both cells and neurites. Other tissues also contained neuron supporting activity but less than that found in nerve extract. These studies indicate that peripheral nerves contain relatively high levels of spinal cord neuron-directed trophic activity, suggesting translocation of neurotrophic factor from muscle to central target neurons. The neurotrophic factor has long-term (weeks) effects, whereas short-term (days) survival is factor independent.  相似文献   

11.
Protein factors derived from skeletal muscle separately promote neurite elongation and acetylcholine synthesis in cultured rat ventral spinal neurons. Morphologic factor activity (neurite-inducing activity) is specifically found in rat skeletal muscle and cord neuron extracts, decreases with the postnatal age of the rats from which muscle extract is prepared, and increases in rat hindlimb muscle after 5 d of denervation. Cholinergic factor activity (acetylcholine synthesis-stimulating activity) is found in extracts of rat cerebral cortex and cardiac muscle in addition to spinal cord and skeletal muscle, increases with animal age, and decreases following 5 d of denervation. Biochemically, the factors responsible for these activities differ in their lability to denaturing conditions, apparent molecular weights, isoelectric points, and lectin-binding specificities. Under reducing conditions, morphologic activity is isolated in a single acidic glycoprotein with an Mr of 35,000, while acetylcholine synthesis-stimulating activity is found in multiple species of different molecular weights. Thus, acetylcholine synthesis-promoting activities and neurite growth-promoting activity appear to reside in different molecules. Significant purification of several of these factors has been achieved.  相似文献   

12.
Sheridan RE  Adler M 《Life sciences》2006,79(6):591-595
In primary embryonic spinal cord cultures, synaptic transmission can be conveniently studied by monitoring radiolabeled neurotransmitter release or by recording of electrophysiological responses. However, while the mature spinal cord contains an appreciable number of cholinergic motoneurons, cultures of embryonic spinal cord have a paucity of these neurons and release little or no acetylcholine upon stimulation. To determine whether the proportion of cholinergic neurons in primary mouse spinal cord cultures can be augmented, the effects of several classes of growth factors were examined on depolarization- and Ca(2+)-evoked release of choline/acetylcholine (Ch/ACh). In the absence of growth factors, little or no evoked release of radiolabeled Ch/ACh could be demonstrated. Media supplemented with brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF) were examined for their ability to preserve the population of neurons in culture. CNTF was found to increase the number of surviving neurons and to enhance the release of radiolabeled Ch/ACh; the other factors were without effect. The action of CNTF was transient, and the neuronal population decreased to levels observed in cultures lacking growth factor after 20 days in vitro. The correlation between enhanced neuron survival and increased Ch/ACh release suggests that CNTF protected cholinergic neurons, albeit transiently, from cell death.  相似文献   

13.
Retrograde trophic influences originating in the skeletal musculature have been postulated to be involved in regulating survival and differentiation of embryonic motor neurons and reactive terminal sprouting of mature motor fibres. We have previously described the use of a quantitative immunoassay for neurofilament protein to bioassay in vitro the cell-type-specific neuronotrophic activity of nerve growth factor (NGF) on sensory ganglion neurons. In the present study, the effect of media conditioned by adult human muscle cells (MCM) on the in vitro development of chicken spinal neurons has been studied using a similar approach. Significant increases in neurofilament protein levels in 7-day chicken embryonic spinal cord cultures were found with doses of MCM protein as low as 0.4 microgram/ml, with a dose-response relationship yielding maximal and half-maximal effects at 4 and 1 microgram/ml, respectively. Maximal increases in neurofilament protein levels were associated with an approximate two-fold increase in neuronal cell survival. MCM also induced increases in choline acetyltransferase activity in chick spinal cord cultures. In both the absence and presence of NGF, MCM did not increase neurofilament protein expression in primary cultures of sensory neurons.  相似文献   

14.
Extracts of rat skeletal muscle contain neurotrophic factors which stimulate the development of choline acetyltransferase in embryonic day 14 rat spinal cord cultures. The trophic activity does not bind heparin-Sepharose or lectin affinity columns. However, mild acid treatment separates the trophic activity into soluble and insoluble fractions. The acid-insoluble activity has been purified 5000-fold to apparent homogeneity using preparative sodium dodecyl sulfate gel electrophoresis to achieve final purification. The purified factor migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, with an apparent molecular mass of 20 kDa and a pI of 4.8. The activity and apparent molecular weight of the purified factor are unaltered by treatment with reducing agents or incubation in acidic conditions. Activity, however, is destroyed by heating or protease treatment. Thus, the factor appears to be a single polypeptide without significant levels of glycosylation or charge microheterogeneity. These results represent the first purification of a neurotrophic factor from skeletal muscle. The physical properties and amino acid composition of this factor differ from those of nerve growth factor and heparin-binding growth factors, as well as from the neurotrophic factor from heart cell conditioned medium which induces cholinergic development in sympathetic neurons.  相似文献   

15.
The cholinergic differentiation factor (CDF) in heart cells is identical to leukemia inhibitory factor (LIF). Recombinant CDF/LIF was shown to alter dramatically neurotransmitter production as well as the levels of several neuropeptides in cultured rat sympathetic neurons. Here it is shown that these changes are likely to be caused by alterations in the mRNA for these proteins and peptides. Growth in 1 nM recombinant CDF/LIF induces mRNA for acetyl CoA: choline-O-acetyltransferase [EC 2.3.1.6; choline acetyltransferase (ChAT)], somatostatin (SOM), substance P, and vasoactive intestinal polypeptide while lowering mRNA levels of tyrosine hydroxylase (EC 1.14.16.2) and neuropeptide Y (NPY). In addition, the sizes of the mRNAs for ChAT, SOM, and NPY are larger after recombinant CDF/LIF treatment.  相似文献   

16.
We examined the effects of ciliary neurotrophic factor (CNTF) and depolarization, two environmental signals that influence noradrenergic and cholinergic function, on neuropeptide expression by cultured sympathetic neurons. Sciatic nerve extract, a rich source of CNTF, increased levels of vasoactive intestinal peptide (VIP), substance P, and somatostatin severalfold while significantly reducing levels of neuropeptide Y (NPY). No change was observed in the levels of leu-enkephalin (L-Enk). These effects were abolished by immunoprecipitation of CNTF-like molecules from the extract with an antiserum raised against recombinant CNTF, and recombinant CNTF caused changes in neuropeptide levels similar to those of sciatic nerve extract. Alterations in neuropeptide levels by CNTF were dose-dependent, with maximal induction at concentrations of 5-25 ng/ml. Peptide levels were altered after only 3 days of CNTF exposure and continued to change for 14 days. Depolarization of sympathetic neuron cultures with elevated potassium elicited a different spectrum of effects; it increased VIP and NPY content but did not alter substance P, somatostatin, or L-Enk. Depolarization is known to block cholinergic induction in response to heart cell conditioned medium and we found that it blocked the induction of choline acetyltransferase (ChAT) and peptides by recombinant cholinergic differentiation factor/leukemia inhibitory factor (CDF/LIF). In contrast, it did not antagonize the effects of CNTF on either ChAT activity or neuropeptide expression. Thus, while CNTF has effects on neurotransmitter properties similar to those previously reported for CDF/LIF, the actions of these two factors are differentially modulated by depolarization, suggesting that the mechanisms of cholinergic and neuropeptide induction for the two factors differ. In addition, in contrast to CDF/LIF, CNTF did not alter levels of ChAT, VIP, substance P, or somatostatin in cultured dorsal root ganglion neurons. These observations indicate that CNTF and depolarization affect the expression of neuropeptides by sympathetic neurons and provide evidence for an overlapping yet distinct spectrum of actions of the two neuronal differentiation factors, CNTF and CDF/LIF.  相似文献   

17.
It has been demonstrated that cultured cholinergic retinal neurons from 8-day-old chicken embryos respond to a polypeptide factor present in retinal cell-conditioned medium (RCM) and in retinal extracts. Compared with control cultures, the activity of acetyl-CoA:choline O-acetyltransferase (EC 2.3.1.6; ChAT) is enhanced more than twofold in neuronal retinal cultures grown for 7 days in the presence of RCM. The present study demonstrates that both ciliary neuronotrophic factor (CNTF), which is characterized by its trophic activity on parasympathetic ciliary neurons, and RCM exhibit identical stimulatory effects on ChAT activity in retinal monolayer cultures. Similarly, RCM supports the in vitro survival of ciliary neurons to the same extent as CNTF. The active species in RCM has a molecular weight (20,900 +/- 1,000) identical to that of CNTF, as determined by preparative sodium dodecyl sulfate gel electrophoresis. The results indicate that cholinergic retinal neurons represent a central neuronal target for CNTF or a closely related protein.  相似文献   

18.
Abstract: The protein kinase inhibitor K-252a increased choline acetyltransferase (ChAT) activity in rat embryonic spinal cord cultures in a dose-dependent manner (EC50 of ∼100 n M ) with maximal stimulatory activity at 300 n M resulting in as much as a fourfold increase. A single application of K-252a completely prevented the marked decline in ChAT activity occurring over a 5-day period following culture initiation. Of 11 kinase inhibitors, only the structurally related inhibitor Staurosporine also increased ChAT activity (EC50 of ∼0.5 n M ). Effective concentrations of K-252a were not cytotoxic or mitogenic and did not alter the total protein content of treated cultures. Insulin-like growth factor I, basic fibroblast growth factor, ciliary neurotrophic factor, and leukemia inhibitory factor yielded dose-dependent increases in ChAT activity in spinal cord cultures. The combination of K-252a with insulin-like growth factor-l or basic fibroblast growth factor increased ChAT activity up to eightfold over that of untreated controls, which was greater than that observed with each compound alone. K-252a combined with ciliary neurotrophic factor or leukemia inhibitory factor demonstrated no additive or synergistic effects on ChAT activity. These results suggest that there are multiple mechanisms for the regulation of ChAT activity in spinal cord cultures. The enhancement of spinal cord ChAT activity by K-252a and Staurosporine defines a new neurotrophic activity for these small organic molecules and raises the possibility that they may activate some regulatory elements in common with the ciliary neurotrophic factor and leukemia inhibitory factor family of neurotrophic proteins.  相似文献   

19.
We studied the effects of insulin, nerve growth factor (NGF), and tetrodotoxin (TTX) on cellular metabolism and the activity of glutamic acid decarboxylase (GAD) and choline acetyltransferase (ChAT) in neuron-rich cultures prepared from embryonic day 15 rat striatum. Insulin (5 micrograms/ml) increased glucose utilization, protein synthesis, and GAD activity in cultures plated over a range of cell densities (2,800-8,400 cells/mm2). TTX reduced GAD activity; NGF had no effect on GAD activity. Insulin treatment reversibly reduced ChAT activity in cultures plated at densities of greater than 4,000 cells/mm2, and the extent of this reduction increased with increasing cell density. The number of acetylcholinesterase-positive neurons was not reduced by insulin, suggesting that insulin acts by down-regulating ChAT rather than by killing cholinergic neurons. Insulin-like growth factor-1 (IGF-1) reduced ChAT activity at concentrations 10-fold lower than insulin, suggesting that insulin's effect on ChAT may involve the IGF-1 receptor. NGF increased ChAT activity; TTX had no effect on ChAT activity. These results suggest that striatal cholinergic and GABAergic neurons are subject to differential trophic control.  相似文献   

20.
Primary cultures of fetal rat septal neurons were used to identify a membrane-associated cholinergic neurotrophic activity. Under serum-free culture conditions, approximately 98% of the septal cells are neurons, and approximately 6% of the neurons are cholinergic as determined immunocytochemically. Crude membranes prepared from rat hippocampal homogenates stimulate choline acetyltransferase (ChAT) activity in treated septal neurons. The membrane-associated trophic activity is apparent at lower protein concentrations than activity present in the soluble fraction and is unevenly distributed in various brain regions; it is highest in hippocampus and striatum and negligible in cerebellum. Membrane trophic activity is developmentally regulated, is heat and trypsin sensitive, and increases the rate of expression of ChAT in septal neurons. Upon gel filtration chromatography of a high-salt membrane extract, trophic activity elutes as a broad peak in the 500 kilodalton (kD) molecular mass range. Stimulation of septal neuronal ChAT activity by either crude membranes or partially purified preparations is not inhibited by antibodies against nerve growth factor (NGF), and its maximal activity is additive to maximally active doses of NGF. The results indicate that hippocampal membranes contain cholinergic neurotrophic activity which may be important for the development of septal cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号