首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that an oxidized derivative of linoleic acid stimulated steroidogenesis in rat adrenal cells. This derivative was also detected in human plasma, and was positively correlated with visceral adiposity and plasma DHEA-S. The present study sought to characterize the effects of this derivative, 12,13-epoxy-9-keto-(10- trans)-octadecenoic acid (EKODE), on steroid production by normal human adrenocortical cells obtained during clinically-indicated adrenalectomy. Cell suspensions were incubated in the presence of varying concentrations of EKODE and ACTH. EKODE (16 microM) significantly increased DHEA production by 28% under basal conditions and by 25% in the presence of a low concentration of ACTH (0.2 ng/ml). The effect on DHEA was absent at a higher ACTH concentration (2.0 ng/ml). EKODE decreased cortisol production by 16% (low ACTH) and 25% (high ACTH), but was without effect on cortisol under basal conditions. The results suggest that EKODE affects adrenal DHEA production in the human, possibly by modulating steroidogenic enzyme activity. We postulate that excess visceral fat delivers fatty acids to the liver, where oxidized derivatives are formed that modulate adrenal steroidogenesis. This may be an important phenomenon in the genesis of changes in adrenal function associated with syndromes of obesity, especially those that include androgen excess.  相似文献   

2.
C R Parker 《Steroids》1999,64(9):640-647
Dehydroepiandrosterone (DHEA) is produced in prodigious quantities by the human adrenal, principally as the 3-sulfoconjugate DHEA sulfate (DS) during intrauterine life. The fetal zone and neocortex cells of the fetal adrenal express large amounts of DHEA sulfotransferase and minimal amounts, at least until very near the end of gestation, of 3beta-hydroxysteroid dehydrogenase. This pattern of enzyme expression favors substantial secretion of DHEA/DS with minimal cortisol produced; the DHEA/DS serves as the major precursor for placental estrogen formation in human pregnancy. Aside from adrenocorticotropin, other physiologic regulators of growth and steroidogenesis in the fetal adrenal have been postulated to exist, but have yet to be identified. Whereas intrauterine stressors may activate adrenal cortisol secretion, the fetal adrenal responds to many pregnancy conditions by suppressing DHEA/DS formation. After birth, the human adrenal undergoes reorganization whereby the large, inner fetal zone regresses, and DHEA/DS production is diminished. Just prior to gonadal maturation, the human adrenal undergoes morphologic and functional changes (adrenarche) that give rise to a prominent zona reticularis that is characterized by the presence of DHEA sulfotransferase, the absence of 3beta-hydroxysteroid dehydrogenase, and an enhancement of DHEA/DS production. The adrenal of the adult responds to stress in many instances like that of the fetus: increased cortisol secretion and diminished DHEA/DS secretion. The mechanisms for this divergence in the adrenocortical pathway is unknown. With aging, there is suppression of DHEA/DS secretion, possibly as the consequence of an involution of the zona reticularis, but corticosteroid production continues unabated.  相似文献   

3.
The effect of prolactin on the secretions of dehydroepiandrosterone (DHEA) and its sulfate (DHEA-S) as well as that of cortisol were studied in vitro in order to investigate the possible regulatory role of prolactin on steroidogenesis of the human fetal adrenal at mid-gestational age. The addition of 0.5 microgram/ml of human prolactin to the incubation medium produced a significant (P less than 0.05) increase in DHEA, DHEA-S, and cortisol secretion. These results indicate that prolactin has a regulatory role in steroidogenesis in the human fetal adrenal at mid-gestation.  相似文献   

4.
The effects of synthetic alpha-human atrial natriuretic polypeptide (alpha-hANP) on steroidogenesis in bovine adrenocortical cells in primary monolayer culture were investigated. alpha-hANP did not inhibit basal aldosterone secretion. alpha-hANP induced a significant dose-dependent inhibition of basal levels of cortisol and dehydroepiandrosterone (DHEA) secretion and also of ACTH (10(-8) M)-stimulated increases in aldosterone, cortisol and DHEA secretion. Visualization of [125I]alpha-hANP binding sites in bovine adrenal gland by an in vitro autoradiographic technique demonstrated that these sites were highly localized in the adrenal cortex, especially the zona glomerulosa. These results suggest that the adrenal cortex may be a target organ for direct receptor-mediated actions of alpha-hANP.  相似文献   

5.
The action of porcine brain natriuretic peptide (pBNP) on the steroidogenesis was investigated in cultured bovine adrenocortical cells. Porcine BNP induced a significant dose-dependent inhibition of both ACTH- and A II-stimulated aldosterone secretion. 10(-8) M and 10(-7) M pBNP also significantly inhibited ACTH-stimulated cortisol and dehydroepiandrosterone (DHEA) secretions. Binding studies of [125I]-pBNP to bovine adrenocortical membrane fractions showed that adrenal cortex had high-affinity and low-capacity pBNP binding sites, with a dissociation constant (Kd) of 1.70 x 10(-10) M and a maximal binding capacity (Bmax) of 19.9 fmol/mg protein. Finally, the 135 Kd radioactive band was specially visualized in the affinity labeling of bovine adrenal cortex with disuccinimidyl suberate (DSS). These results suggest that pBNP may have receptor-mediated suppressive actions on bovine adrenal steroidogenesis, similar to that in atrial natriuretic peptide (ANP).  相似文献   

6.
Surgical or pharmacologic methods to control gonadal androgen biosynthesis are effective approaches in the treatment of a variety of non-neoplastic and neoplastic diseases. For example, androgen ablation and its consequent reduction in circulating levels of testosterone is an effective therapy for advanced prostate cancers. Unfortunately, the therapeutic effectiveness of this approach is often temporary because of disease progression to the 'castration resistant' (CRPC) state, a situation for which there are limited treatment options. One mechanism thought to be responsible for the development of CRPC is extra-gonadal androgen synthesis and the resulting impact of these residual extra-gonadal androgens on prostate tumor cell proliferation. An important enzyme responsible for the synthesis of extra-gonadal androgens is CYP17A1 which possesses both 17,20-lyase and 17-hydroxylase catalytic activities with the 17,20-lyase activity being key in the androgen biosynthetic process. Orteronel (TAK-700), a novel, selective, and potent inhibitor of 17,20-lyase is under development as a drug to inhibit androgen synthesis. In this study, we quantified the inhibitory activity and specificity of orteronel for testicular and adrenal androgen production by evaluating its effects on CYP17A1 enzymatic activity, steroid production in monkey adrenal cells and human adrenal tumor cells, and serum levels of dehydroepiandrosterone (DHEA), cortisol, and testosterone after oral dosing in castrated and intact male cynomolgus monkeys. We report that orteronel potently suppresses androgen production in monkey adrenal cells but only weakly suppresses corticosterone and aldosterone production; the IC(50) value of orteronel for cortisol was ~3-fold higher than that for DHEA. After single oral dosing, serum levels of DHEA, cortisol, and testosterone were rapidly suppressed in intact cynomolgus monkeys. In castrated monkeys treated twice daily with orteronel, suppression of DHEA and testosterone persisted throughout the treatment period. In both in vivo models and in agreement with our in vitro data, suppression of serum cortisol levels following oral dosing was less than that seen for DHEA. In terms of human CYP17A1 and human adrenal tumor cells, orteronel inhibited 17,20-lyase activity 5.4 times more potently than 17-hydroxylase activity in cell-free enzyme assays and DHEA production 27 times more potently than cortisol production in human adrenal tumor cells, suggesting greater specificity of inhibition between 17,20-lyase and 17-hydroxylase activities in humans vs monkeys. In summary, orteronel potently inhibited the 17,20-lyase activity of monkey and human CYP17A1 and reduced serum androgen levels in vivo in monkeys. These findings suggest that orteronel may be an effective therapeutic option for diseases where androgen suppression is critical, such as androgen sensitive and CRPC.  相似文献   

7.
The effects of a physiological dose of IGF I (40 ng/ml approximately 5 x 10(-9) M) on steroidogenesis were studied in bovine adrenal fasciculata cells cultured in serum-free McCoy's medium. They were compared with those of a single dose of ACTH (0.25 ng/ml approximately 10(-10) M) at approximately the concentration inducing half-maximal stimulation. With IGF I, steroidogenesis commenced after 48 h culture and progressively increased throughout the 96-h test period. Expressed as stimulated level/control level ratios, glucocorticoid (cortisol + corticosterone) responses to IGF I after 4 days' culture (2.41 +/- 0.20 (SEM) n = 9) were similar to those obtained with ACTH (2.59 +/- 0.18, n = 9). A combination of the two peptides had a synergistic effect (5.95 +/- 0.79, n = 5). The cortisol/corticosterone ratio increased in the presence of IGF I from 1 +/- 0.19 to 1.76 +/- 0.45 (n = 7, P less than 0.02), although less so than in the presence of ACTH (5.50 +/- 0.98). Moreover, cortisol production was accompanied by androstenedione production (2.36 ng/10(6) cells, n = 3) similar to that induced by ACTH (2.10 ng/10(6) cells, n = 3). These findings together suggest stimulation of 17 alpha-hydroxylase activity. Cell multiplication was unaffected by IGF I. [3H]Thymidine incorporation into DNA reached only 193% +/- 17 (SEM) (n = 4) of control levels, whereas with ACTH it dropped to 60% +/- 5. Our findings show that IGF I alone has no mitogenic effect on adrenocortical cells in vitro, but that it is capable of inducing differentiated steroidogenesis.  相似文献   

8.
In a previous study evidence was presented that synthetic alpha-human atrial natriuretic polypeptide (alpha-hANP) significantly inhibits the secretion of aldosterone, cortisol, and dehydroepiandrosterone (DHEA) from cultured human adrenal cells. In the present work using crude membrane fractions prepared from human adrenal tissues obtained at autopsy, we noted the existence and molecular weight of specific binding sites for [125I]alpha-hANP. The mean maximal binding capacity (Bmax) and dissociation constant (Kd) of 4 human adrenal membrane fractions were 8.0 +/- 1.6 fmol/mg protein and 25.7 +/- 7.4 pM, respectively, as calculated by Scatchard plot analysis. The interaction of [125I]alpha-hANP with the high-affinity binding sites in human adrenal membrane fractions was unaffected by the addition of lysine vasopressin (LVP), somatostatin-14 and angiotensin-II (A-II). When the membrane fractions were incubated with [125I]alpha-hANP and then cross-linked with disuccinimidyl suberate (5 mM), the 67,000-Da protein was specifically radiolabeled. The very high affinity of [125I]alpha-hANP binding sites suggests that human adrenal steroidogenesis may be influenced by plasma levels of hANP, under physiological conditions.  相似文献   

9.
BackgroundStress system consists of the hypothalamicpituitary-adrenal (HPA) axis and the locus caeruleus/norepinephrine-autonomic nervous system (ANS). Traditionally, HPA axis activity is evaluated by measuring its end-product cortisol, while the activity of ANS is assessed using heart rate variability (HRV) indices. Alterations in cortisol levels and HRV measures during laboratory-based stress tasks were extensively studied in previous research. However, scarce data exist on the associations of HRV measures with the levels of other adrenal steroid hormones under baseline conditions. Thus, we aimed to evaluate the activity of the HPA axis by measuring salivary cortisol, cortisone, dehydroepiandrosterone (DHEA) levels, and their ratios and to examine its association with HRV measures in a sample of healthy young and middle-aged adults.MethodsFor each participant (n=40), three data collection sessions taking place at the same time of the day were scheduled within five working days. Participants completed a self-reported questionnaire on sociodemographic and lifestyle characteristics, filled out t h e Perceived Stress Scale and State-Trait Anxiety Inventory. Also, saliva samples were collected, and physiological measures, including resting HR and HRV, were recorded during three data collection sessions.ResultsStatistically significant associations between diminished parasympathetic vagal tone evaluated by time domain HRV measures and higher salivary cortisol, lower DHEA levels, as well as decreased DHEA to cortisol ratio, were found. Also, physiological stress indicators (i.e., HRV) showed greater intraindividual stability compared with biochemical biomarkers (i.e., salivary steroid hormones) within five days.ConclusionsOur findings suggest that both cortisol and DHEA mediate the link between two stress-sensitive homeostatic systems.  相似文献   

10.
In skeletal muscle, intracellular Po2 can fall to as low as 2-3 mmHg. This study tested whether oxygen regulates cellular respiration in this range of oxygen tensions through direct coupling between phosphorylation potential and intracellular Po2. Oxygen may also behave as a simple substrate in cellular respiration that is near saturating levels over most of the physiological range. A novel optical spectroscopic method was used to measure tissue oxygen consumption (Mo2) and intracellular Po2 using the decline in hemoglobin and myoglobin saturation in the ischemic hindlimb muscle of Swiss-Webster mice. 31P magnetic resonance spectroscopic determinations yielded phosphocreatine concentration ([PCr]) and pH in the same muscle volume. Intracellular Po2 fell to <2 mmHg during the ischemic period without a change in the muscle [PCr] or pH. The constant phosphorylation state despite the decline in intracellular Po2 rejects the hypothesis that direct coupling between these two variables results in a regulatory role for oxygen in cellular respiration. A second set of experiments tested the relationship between intracellular Po2 and Mo2. In vivo Mo2 in mouse skeletal muscle was increased by systemic treatment with 2 and 4 mg/kg body wt 2,4-dinitrophenol to partially uncouple mitochondria. Mo2 was not dependent on intracellular Po2 above 3 mmHg in the three groups despite a threefold increase in Mo2. These results indicate that Mo2 and the phosphorylation state of the cell are independent of intracellular Po2 throughout the physiological range of oxygen tensions. Therefore, we reject a regulatory role for oxygen in cellular respiration and conclude that oxygen acts as a simple substrate for respiration under physiological conditions.  相似文献   

11.
Dehydroepiandrosterone (DHEA) and cortisol are the most abundant hormones of the human fetal and adult adrenals released as end products of a tightly coordinated endocrine response to stress. Together, they mediate short- and long-term stress responses and enable physiological and behavioral adjustments necessary for maintaining homeostasis. Detrimental effects of chronic or repeated elevations in cortisol on behavioral and emotional health are well documented. Evidence for actions of DHEA that offset or oppose those of cortisol has stimulated interest in examining their levels as a ratio, as an alternate index of adrenocortical activity and the net effects of cortisol. Such research necessitates a thorough understanding of the co-actions of these hormones on physiological functioning and in association with developmental outcomes. This review addresses the state of the science in understanding the role of DHEA, cortisol, and their ratio in typical development and developmental psychopathology. A rationale for studying DHEA and cortisol in concert is supported by physiological data on the coordinated synthesis and release of these hormones in the adrenal and by their opposing physiological actions. We then present evidence that researching cortisol and DHEA necessitates a developmental perspective. Age-related changes in DHEA and cortisol are described from the perinatal period through adolescence, along with observed associations of these hormones with developmental psychopathology. Along the way, we identify several major knowledge gaps in the role of DHEA in modulating cortisol in typical development and developmental psychopathology with implications for future research.  相似文献   

12.
With a view to establishing whether first-trimester human placentas possess the ability to synthesize DHEA from cholesterol, homogenates of this tissue obtained from two groups of women undergoing elective termination of normally progressing pregnancy between 10 - 12 weeks gestation (n = 5, age 23 - 29 years and n = 5, age 21 - 27 years) were incubated separately with [26-(14)C]cholesterol for the generation of [14C]isocaproic acid + pregnenolone and [7n-3H]pregnenolone for the biosynthesis of [3H]DHEA. Controls consisted of homogenates heated in a boiling water bath for 10 min. Using the reverse-isotope dilution analysis, desmolase efficiency expressed as mean specific activity of [14C]isocaproic acid varied from 282 to 725 dpm/mmol, while that of 17 alpha-hydroxylase and steroid C-17,20-lyase, catalyzed conversion of [7n-3H]pregnenolone to [3H]DHEA varied from 3498 to 26 258 dpm/mmol. The corresponding efficiencies of enzymicconversion varied between 5.8 x 10( -2) and 1.5 x 10( -1) % for [14C]isocaproic acid, but between 5.5 x 10( -2) and 4.1 x 10( -1) % for [3H]DHEA. No such metabolite was evident in the controls of heat-denatured homogenates. These are the first study results to demonstrate that early placentas are capable of converting cholesterol to pregnenolone to DHEA, contrary to the widely held concept of DHEA production by fetal and maternal adrenal glands. This finding has important physiological implications and could provide a new dimension to the concept of fetoplacental steroidogenesis.  相似文献   

13.
This study investigated adrenal androgens (AA), gonadotropins, and cortisol in castrated and gonad-intact male rhesus macaques from birth through infancy. Blood samples were collected longitudinally from castrated (n = 6; weekly, 1-40 wk) and intact (n = 4; every other week, 1-17 wk) males. Plasma concentrations of AA were determined by liquid chromatography-tandem mass spectrometry, and plasma concentrations of cortisol and gonadotropins were determined by RIA. Dehydroepiandrosterone sulfate (DHEAS) concentrations increased almost threefold (to 8 wk), dehydroepiandrosterone (DHEA) increased more than eightfold (to 11 wk), and androstenedione doubled (to 15 wk) in five castrated infant males and declined continuously thereafter. A sixth castrated male had markedly different temporal patterns and concentrations (many times more than 2 SDs from the cohort mean) of AA and gonadotropins from first sampling (3 wk) and was excluded from analysis. Cortisol increased over 16 wk but correlated poorly with DHEAS. Luteinizing and follicle-stimulating hormones increased to peaks at 3 and 7 wk, respectively. Testis-intact males exhibited similar profiles, but with earlier peaks of DHEAS (5 wk) and DHEA and androstenedione (7 wk). Peak concentrations of DHEAS were lower and those of DHEA and androstenedione were higher in intact than castrated infants. Testosterone was undetectable in castrated males and >0.5 ng/ml in intact males but was not correlated with DHEA or DHEAS. These are the first data documenting a transient increase in AA secretion during infancy in an Old World primate and are consistent with the previously documented time course of zona reticularis development that accompanies increases in androgen synthetic capacity of the adrenal. The rhesus is a promising model for androgen secretion from the human adrenal cortex.  相似文献   

14.
Dehydroepiandrosterone (DHEA) is an adrenal androgen whose function is poorly understood. Although DHEA and DHEA sulfate (DHEAS) are secreted in relatively high quantities by the human adrenal, the laboratory rat secretes very little, thus hindering experimental studies of the hormone. In this paper, we measured the changes in serum DHEA and DHEAS under various physiological conditions in golden hamsters. Evening serum DHEAS fell from 6.30 +/- 0.78 microg/dl (mean +/- SE) before surgery to 3.03 +/- 0.23 microg/dl 12 days after bilateral adrenalectomy. Hamsters had higher levels of DHEA and DHEAS in the evening than in the morning, but removal of the gonads did not consistently decrease serum DHEA or DHEAS in males or females. Evening levels of DHEA and DHEAS reached a peak around 7 weeks of age and then gradually decreased to about one-third of these levels by one year of age. These results suggest that DHEA and DHEAS are secreted at least in part from the hamster adrenal, that they do not originate from the gonads, and that there is a daily rhythm with peak levels at a time of day just preceding the active phase. In addition, the levels of these hormones decrease with aging.  相似文献   

15.
16.
Mathematical simulations of oxygen delivery to tissue from capillaries that take into account the particulate nature of blood flow predict the existence of oxygen tension (Po(2)) gradients between erythrocytes (RBCs). As RBCs and plasma alternately pass an observation point, these gradients are manifested as rapid fluctuations in Po(2), also known as erythrocyte-associated transients (EATs). The impact of hemodilution on EATs and oxygen delivery at the capillary level of the microcirculation has yet to be elucidated. Therefore, in the present study, phosphorescence quenching microscopy was used to measure EATs and Po(2) in capillaries of the rat spinotrapezius muscle at the following systemic hematocrits (Hct(sys)): normal (39%) and after moderate (HES1; 27%) or severe (HES2; 15%) isovolemic hemodilution using a 6% hetastarch solution. A 532-nm laser, generating 10-micros pulses concentrated onto a 0.9-microm spot, was used to obtain plasma Po(2) values 100 times/s at points along surface capillaries of the muscle. Mean capillary Po(2) (Pc(O(2)); means +/- SE) significantly decreased between conditions (normal: 56 +/- 2 mmHg, n = 45; HES1: 47 +/- 2 mmHg, n = 62; HES2: 27 +/- 2 mmHg, n = 52, where n = capillary number). In addition, the magnitude of Po(2) transients (DeltaPo(2)) significantly decreased with hemodilution (normal: 19 +/- 1 mmHg, n = 45; HES1: 11 +/- 1 mmHg, n = 62; HES2: 6 +/- 1 mmHg, n = 52). Results suggest that the decrease in Pc(O(2)) and DeltaPo(2) with hemodilution is primarily dependent on Hct(sys) and subsequent microvascular compensations.  相似文献   

17.
The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po(2) [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po(2) dependence of oxygen consumption, Vo(2), proportional to the rate of Po(2) decrease. Fitting equations obtained from a model of heterogeneous intracellular Po(2) were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of Vo(2) on Po(2). This curve consists of two regions connected by the point for critical Po(2) of the cell (i.e., Po(2) at the sarcolemma when the center of the cell becomes anoxic). The critical Po(2) was below the Po(2) for half-maximal respiratory rate (P(50)) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O(2)/cm(3)·s and mitochondrial P(50) was k = 10.5 ± 0.8 mmHg. The range of Po(2) values inside the muscle fibers was found to be 4-5 mmHg at the critical Po(2). The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po(2) was substantially lower than the interstitial Po(2) of 53 ± 2 mmHg, a finding that indicates that Vo(2) under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue.  相似文献   

18.
The effects of cyproterone acetate (CA) on steroidogenesis in isolated guinea-pig adrenal cells have been investigated by measuring the production of cortisol, its immediate precursors (11-deoxycortisol and 17-hydroxyprogesterone), and adrenal androgens (delta 4-androstenedione and dehydroepiandrosterone). Used at a dose of 2 micrograms/ml, CA provoked a sharp drop in the production of cortisol, aldosterone and 11-deoxycortisol. By contrast, 17-hydroxyprogesterone, delta 4-androstenedione and dehydroepiandrosterone were increased, which suggests that 21-hydroxylase activity is inhibited. With concentrations above 2 micrograms/ml CA, it would seem to be the 3-beta-ol-dehydrogenase-delta 4,5-isomerase complex that is affected, since dehydroepiandrosterone exhibited a sudden increase, whereas 17-hydroxyprogesterone and delta 4-androstenedione showed a relative decrease. The enzymatic system or systems involved therefore appear to be linked to the concentration of CA used but, whatever the case, the drop in cortisol production is accompanied by a decrease in aldosterone and an increase in adrenal androgen levels.  相似文献   

19.
The goal of the present study was to evaluate the effects of relatively short-term chronic intermittent hypoxia (CIH) on endothelial function of resistance vessels in the skeletal muscle and cerebral circulations. Sprague-Dawley rats were exposed to 14 days of CIH (10% fraction of inspired oxygen for 1 min at 4-min intervals, 12 h/day, n = 6). Control rats (n = 6) were housed under normoxic conditions. After 14 days, resistance arteries of the gracilis muscle (GA) and middle cerebral arteries (MCA) were isolated and cannulated with micropipettes, perfused and superfused with physiological salt solution, and equilibrated with 21% O2-5% CO2 in a heated chamber. The arteries were pressurized to 90 mmHg, and vessel diameters were measured via a video micrometer before and after exposure to ACh (10-7-10-4 M), sodium nitroprusside (10-6 M), and acute reduction of Po2 in the perfusate/superfusate (from 140 to 40 mmHg). ACh-induced dilations of GA and MCA from animals exposed to CIH were greatly attenuated, whereas responses to nitroprusside were similar to controls. Dilations of both GA and MCA in response to acute reductions in Po2 were virtually abolished in animals exposed to CIH compared with controls. These findings suggest that exposure to CIH reduces the bioavailability of nitric oxide in the cerebral and skeletal muscle circulations and severely blunts vasodilator responsiveness to acute hypoxia.  相似文献   

20.
We investigated the mechanism of dissociation of cortisol and dehydroepiandrosterone sulfate (DHEA-S) secretion by the adrenal glands after the removal of an adrenal gland containing an adrenocortical adenoma in a patient with Cushing's syndrome. After removal of the adrenocortical adenoma, the serum cortisol rapidly decreased from 24.6 +/- 6.4 micrograms/dl (mean +/- SD, n = 6) to 0.7 +/- 0.5 micrograms/dl. Serum DHEA-S levels were 15 +/- 14 micrograms/dl and 6 +/- 9 micrograms/dl before and after surgery, respectively, and significantly lower than the control values. Serum cortisol levels reverted to normal levels 1.5 to 3 years after the surgery. On the other hand, DHEA-S levels reverted to normal 5 to 7 years after the serum cortisol levels had normalized. Monolayer cultures of normal human adrenal cells obtained at adrenalectomy in patients with advanced breast cancer and atrophic adrenal cells adjacent to the adrenocortical adenoma in patients with Cushing's syndrome were used to study the mechanism of the dissociation of cortisol and DHEA-S secretion. ACTH caused significant increases in the productions of pregnenolone (P5), progesterone (P4), 17-hydroxypregnenolone (17-OH-P5), 17-hydroxyprogesterone (17-OH-P4), DHEA, DHEA-S, androstenedione (delta 4-A), and cortisol. The amounts of 17-OH-P5 and 17-OH-P4 produced by ACTH in atrophic adrenal cells were significantly greater than those in normal adrenal cells. The amounts of DHEA, DHEA-S and delta 4-A produced by ACTH in atrophic adrenal cells were significantly smaller than those of normal adrenal cells. The conversion rate of 17-OH-[3H]P5 to 17-OH-[3H]P4 and 11-deoxy-[3H] cortisol was higher in atrophic adrenal cells than in normal adrenal cells, but the conversion rate to [3H]DHEA, [3H]DHEA-S and [3H]delta 4-A was significantly lower in atrophic adrenal cells than in normal adrenal cells. These results suggest that the dissociation of cortisol from DHEA-S after the removal of adrenocortical adenoma is a probably due to diminished C17,20-lyase activity in the remaining atrophic adrenal gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号