首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of muscarinic type 3 receptor knockout (M3KO) on the cholinergic regulation of insulin secretion and phospholipase C (PLC) activation was determined. Islets isolated from control, wild-type mice or heterozygotes responded with comparable insulin secretory responses to 15 mM glucose. This response was markedly amplified by the inclusion of 10 microM carbachol. While 15 mM glucose-induced release remained similar to wild-type and heterozygote responses in M3KO mice, the stimulatory impact of carbachol was abolished. Stimulation with 15 mM glucose plus 50 microM carbachol increased fractional efflux rates of myo-[2-3H]inositol from control wild-type and heterozygote islets but not from M3KO islets. Fed plasma insulin levels of M3KO mice were reduced 68% when compared to values obtained from combined wild-type and heterozygote animals. These studies support the conclusion that the M3 receptor in islets is coupled to PLC activation and insulin secretion and that cholinergic stimulation of the islets may play an important role in the regulation of plasma insulin levels.  相似文献   

2.
The impact of modest but prolonged (3 h) exposure to high physiological glucose concentrations and hyperkalemia on the insulin secretory and phospholipase C (PLC) responses of rat pancreatic islets was determined. In acute studies, glucose (5-20 mM) caused a dose-dependent increase in secretion with maximal release rates 25-fold above basal secretion. When measured after 3 h of exposure to 5-10 mM glucose, subsequent stimulation of islets with 10-20 mM glucose during a dynamic perifusion resulted in dose-dependent decrements in secretion and PLC activation. Acute hyperkalemia (15-30 mM) stimulated calcium-dependent increases in both insulin secretion and PLC activation; however, prolonged hyperkalemia resulted in a biochemical and secretory lesion similar to that induced by sustained modest hyperglycemia. Glucose- (8 mM) desensitized islets retained significant sensitivity to stimulation by either carbachol or glucagon-like peptide-1. These findings emphasize the vulnerability of the beta-cell to even moderate sustained hyperglycemia and provide a biochemical rationale for achieving tight glucose control in diabetic patients. They also suggest that PLC activation plays a critically important role in the physiological regulation of glucose-induced secretion and in the desensitization of release that follows chronic hyperglycemia or hyperkalemia.  相似文献   

3.
The effects of D-glyceraldehyde and glucose on islet function were compared in order to investigate the difference between them in the mechanism by which they induce insulin secretion. The stimulation of insulin secretion from isolated rat islets by 10 mM glyceraldehyde was not completely inhibited by either 150 microM diazoxide (an opener of ATP-sensitive K(+) channels) or 5 microM nitrendipine (an L-type Ca(2+)-channel blocker), whereas the stimulation of insulin secretion by 20 mM glucose was completely inhibited by either drug. The insulin secretion induced by glyceraldehyde was less augmented by 100 microM carbachol (a cholinergic agonist) than that induced by glucose. The stimulation of myo-inositol phosphate production by 100 microM carbachol was more marked in islets incubated with the hexose than with the triose. The content of glyceraldehyde 3-phosphate, a glycolytic intermediate, in islets incubated with glyceraldehyde was far higher than that in islets incubated with glucose, whereas the ATP content in islets incubated with the triose was significantly lower than that in islets incubated with the hexose. These results suggest that glyceraldehyde not only mimics the effect of glucose on insulin secretion but also has the ability to cause the secretion of insulin without the influx of Ca(2+ )through voltage-dependent Ca(2+) channels. The reason for the lower potency of the triose than the hexose in stimulating insulin secretion is also discussed.  相似文献   

4.
Isolated rat islets were incubated with myo-[2-3H]inositol for 2 h to label their phosphoinositide (PI) pools. Labelling was carried out under three separate conditions: in media containing low (2.75 mM) glucose, high (13.75 mM) glucose, or low (2.75 mM) glucose plus sulphated cholecystokinin (CCK-8S; 200 nM). After labelling, the islets were perifused and the insulin-secretory response to 20 mM-glucose was measured. PI hydrolysis in these same islets was assessed by measurements of both [3H]inositol efflux and the accumulation of labelled inositol phosphates. The following major observations were made. After prelabelling for 2 h in low glucose, perifusion with 20 mM-glucose resulted in a biphasic insulin-secretory response, an increase in [3H]inositol efflux and a parallel increase in the accumulation of labelled inositol phosphates. After prelabelling in high (13.75 mM) glucose, peak first-phase insulin secretion induced by 20 mM-glucose increased 2-2.5-fold, whereas the second phase of insulin release, as well as [3H]inositol efflux and inositol phosphate accumulation, were significantly decreased. The simultaneous infusion of the diacylglycerol kinase inhibitor 1-mono-oleoylglycerol (50 microM), along with 20 mM-glucose, restored the second-phase insulin-secretory response from these islets. After labelling in low (2.75 mM) glucose plus CCK-8S, the initial phases of the insulin-secretory and [3H]inositol-efflux responses to 20 mM-glucose were blunted and the sustained phases of both responses were markedly decreased. Inositol phosphate accumulation was also impaired. Labelling islets in high (13.75 mM) glucose or low (2.75 mM) glucose plus CCK-8S suppresses, in a parallel fashion, glucose-induced increases in PI hydrolysis and in second-phase insulin release. These findings suggest that desensitization of the insulin-secretory response is a consequence of impaired information flow in the inositol lipid cycle.  相似文献   

5.
The effect of tetracaine and lidocaine on insulin secretion and glucose oxidation by islets of ob/ob-mice was measured. Tetracaine, at a concentration of 1 microM to 0.1 mM, did not markedly influence the basal (3 mM glucose) insulin secretion, whereas 0.5-3.5 mM induced a marked increase. At 7 mM glucose, there was a dose-dependent increase with 0.1-2.5 mM tetracaine. Insulin release induced by 20 mM glucose was potentiated by 0.1 mM and 0.5 mM tetracaine, but this effect disappeared at 1 mM tetracaine. The stimulatory effect of 0.5-1 mM tetracaine on basal insulin release was blocked by the secretory inhibitors, adrenaline (1 microM), clonidine (1 microM) and by Ca2+-deficiency, but the stimulation by 3.5 mM tetracaine was not reduced by 1 microM clonidine or Ca2+ deficiency. Atropine (10 microM) did not affect the stimulation by 0.5 mM tetracaine at 3 mM glucose or by 0.25 mM tetracaine at 20 mM glucose. Tetracaine, at 0.1 mM, potentiated the secretory stimulation of 20 mM L-leucine, 20 mM D-mannose, or 1 microM glibenclamide. Mannoheptulose, 10 mM, abolished the combined effects of 0.1 mM tetracaine and 10 mM glucose. Lidocaine, 1-5 mM, stimulated basal insulin release, but 1 microM-1 mM of the drug did not affect glucose-induced (20 mM glucose) insulin release and 5 mM lidocaine inhibited glucose stimulation. The oxidation of 10 mM D-[U-14C]glucose was slightly enhanced by 0.1 and 1 mM tetracaine. The results indicate that tetracaine and lidocaine, at certain concentrations, can induce insulin release and that tetracaine potentiates secretion induced by other secretagogues. It is concluded that these effects may be associated with beta-cell functions related to the adrenergic receptors but probably not to cholinergic receptors.  相似文献   

6.
Islet responses of two different Mus geni, the laboratory mouse (Mus musculus) and a phylogenetically more ancient species (Mus caroli), were measured and compared with the responses of islets from rats (Rattus norvegicus). A minimal and flat second-phase response to 20 mM glucose was evoked from M. musculus islets, whereas a large rising second-phase response characterized rat islets. M. caroli responses were intermediate between these two extremes; a modest rising second-phase response to 20 mM glucose was observed. Prior, brief stimulation of rat islets with 20 mM glucose results in an amplified insulin secretory response to a subsequent 20 mM glucose challenge. No such potentiation or priming was observed from M. musculus islets. In contrast, M. caroli islets displayed a modest twofold potentiated first-phase response upon subsequent restimulation with 20 mM glucose. Inositol phosphate (IP) accumulation in response to 20 mM glucose stimulation in [(3)H]inositol-prelabeled rat or mouse islets paralleled the insulin secretory responses. The divergence in 20 mM glucose-induced insulin release between these species may be attributable to differences in phospholipase C-mediated IP accumulation in islets.  相似文献   

7.
Exposure of rat pancreatic islets to 20 mM leucine for 24 h reduced insulin release in response to glucose (16.7 and 22.2 mM). Insulin release was normal when the same islets were stimulated with leucine (40 mM) or glyburide (1 microM). To investigate the mechanisms responsible for the different effect of these secretagogues, we studied several steps of glucose-induced insulin secretion. Glucose utilization and oxidation rates in leucine-precultured islets were similar to those of control islets. Also, the ATP-sensitive K(+) channel-independent pathway of glucose-stimulated insulin release, studied in the presence of 30 mM K(+) and 250 microM diazoxide, was normal. In contrast, the ATP-to-ADP ratio after stimulation with 22.2 mM glucose was reduced in leucine-exposed islets with respect to control islets. The decrease of the ATP-to-ADP ratio was due to an increase of ADP levels. In conclusion, prolonged exposure of pancreatic islets to high leucine levels selectively impairs glucose-induced insulin release. This secretory abnormality is associated with (and might be due to) a reduced ATP-to-ADP ratio. The abnormal plasma amino acid levels often present in obesity and diabetes may, therefore, affect pancreatic islet insulin secretion in these patients.  相似文献   

8.
The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.  相似文献   

9.
Prolonged periods of "beta-cell rest" exert beneficial effects on insulin secretion from pancreatic islets subjected to a high-glucose environment. Here, we tested for effects of short-term intermittent rest achieved by diazoxide. Rat islets were cultured for 48 h with 27 mmol/l glucose alone, with diazoxide present for 2 h every 12 h or with continuous 48-h presence of diazoxide. Both protocols with diazoxide enhanced the postculture insulin response to 27 mmol/l glucose, to 200 mumol/l tolbutamide, and to 20 mmol/l KCl. Intermittent diazoxide did not affect islet insulin content and enhanced only K(ATP)-dependent secretion, whereas continuous diazoxide increased islet insulin contents and enhanced both K(ATP)-dependent and -independent secretory effects of glucose. Intermittent and continuous diazoxide alike increased postculture ATP-to-ADP ratios, failed to affect [(14)C]glucose oxidation, but decreased oxidation of [(14)C]oleate. Neither of the two protocols affected gene expression of the ion channel-associated proteins Kir6.2, sulfonylurea receptor 1, voltage-dependent calcium channel-alpha1, or Kv2.1. Continuous, but not intermittent, diazoxide decreased significantly mRNA for uncoupling protein-2. A 2-h exposure to 20 mmol/l KCl or 10 mumol/l cycloheximide abrogated the postculture effects of intermittent, but not of continuous, diazoxide. Intermittent diazoxide decreased islet levels of the SNARE protein SNAP-25, and KCl antagonized this effect. Thus short-term intermittent diazoxide treatment has beneficial functional effects that encompass some but not all characteristics of continuous diazoxide treatment. The results support the soundness of intermittent beta-cell rest as a treatment strategy in type 2 diabetes.  相似文献   

10.
Szkudelski T 《Life sciences》2008,82(7-8):430-435
Resveratrol, a naturally occurring phytoalexin, is known to exert numerous beneficial effects in the organism. Literature data indicate that this compound may, among other effects, play a role in prevention of diabetes and diabetic complications. Resveratrol was recently found to affect insulin secretion in vitro and to change blood insulin concentrations. These effects are, however, not fully elucidated. In the present study, 1, 10 and 100microM resveratrol incubated for 90min with pancreatic islets isolated from normal rats failed to affect basal insulin release, but substantially impaired the secretory response to physiological and maximally effective glucose. In depolarized islets exposed to resveratrol, succinate-induced insulin secretion was also diminished. The blockade of somatostatin receptors substantially enhanced insulin secretion induced by 6.7mM glucose and simultaneously suppressed the inhibitory effect of 1microM resveratrol, but at 10 and 100microM, resveratrol was still able to attenuate hormone secretion. Acetylcholine clearly increased the insulin-secretory response to 6.7mM glucose and canceled the inhibitory effect of 1microM resveratrol. However, resveratrol at concentrations 10 and 100microM strongly decreased insulin secretion. The direct activation of protein kinase C totally suppressed the inhibitory influence of 1 and 10microM resveratrol on hormone secretion. However, activation of this enzyme appeared to be insufficient to cancel the insulin-suppressive effect of 100microM resveratrol. These data indicate that resveratrol-induced inhibition of insulin secretion may be partially mitigated by suppression of somatostatin action, activation of protein kinase C or the presence of acetylcholine. The in vivo experiment revealed that resveratrol, administered to normal rats at the dose 50mg/kg body weight, diminished blood insulin concentrations at 30min, without concomitant changes in glycemia. These observations point to the direct insulin-suppressive action of resveratrol in the rat.  相似文献   

11.
The effect of various inhibitors of insulin secretion such as mannoheptulose (20 mM), atropine (1 mM), diphenylhydantoin (20 microng/ml), high concentration of Mg++ (5.3 mM) in the presence of 20 mM glucose (control) on insulin content and secretion from collagenase-isolated rat pancreatic islets was studied in vitro by cultivation of islets up to 5 or 9 days in glass Petri dishes without attachment. In a following short-term incubation for 60 min the glucose-induced insulin release without and with theophylline (5 mM) was investigated. Islets cultivated at 5 mM glucose and at 20 mM glucose with the inhibitors mannoheptulose or atropine lost the responsiveness to glucose and theophylline whereas such islets cultivated at 20 mM glucose alone or with diphenylhydantoin (DPH) or 5.3 mg Mg++ showed a stimulation of insulin secretion by glucose and theophylline. Compared, however, with freshly isolated islets all cultivated islets were restricted in their maximal glucose response and this defect was not evoked alone by quantitative changes in islet insulin content. Nevertheless, culture conditions which facilitate a net increase of insulin (content and release) during cultivation influenced also positively the glucose-induced insulin release without and with 5 mM theophylline in the following short-term experiments.  相似文献   

12.
The transport of Cd2+ and the effects of this ion on secretory activity and metabolism were investigated in beta cell-rich pancreatic islets isolated from obese-hyperglycemic mice. The endogenous cadmium content was 2.5 mumol/kg dry wt. After 60 min of incubation in a Ca2+-deficient medium containing 2.5 microM Cd2+ the islet cadmium content increased to 0.18 mmol/kg dry wt. This uptake was reduced by approx. 50% in the presence of 1.28 mM Ca2+. The incorporation of Cd2+ was stimulated either by raising the concentration of glucose to 20 mM or K+ to 30.9 mM. Whereas D-600 suppressed the stimulatory effect of glucose by 75%, it completely abolished that obtained with high K+. Only about 40% of the incorporated cadmium was mobilized during 60 min of incubation in a Cd2+-free medium containing 0.5 mM EGTA. It was possible to demonstrate a glucose-induced suppression of Cd2+ efflux into a Ca2+-deficient medium. Concentrations of Cd2+ up to 2.5 microM did not affect glucose oxidation, whereas, there was a progressive inhibition when the Cd2+ concentration was above 10 microM. Basal insulin release was stimulated by 5 microM Cd2+. At a concentration of 160 microM, Cd2+ did not affect basal insulin release but significantly inhibited the secretory response to glucose. It is concluded that the beta cell uptake of Cd2+ is facilitated by the activation of voltage-dependent Ca2+ channels. Apparently, the accumulation of Cd2+ mimics that of Ca2+ also involving a component of intracellular sequestration promoted by glucose.  相似文献   

13.
The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependentOFF efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 microM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 microM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.  相似文献   

14.
1. When pancreatic islets are preincubated for 20h in the presence of glucose (83.3mM) and thereafter transferred to a glucose-free medium, theophylline (1.4mM) provokes a dramatic stimulation of insulin release. This phenomenon does not occur when the islets are preincubated for either 20h at low glucose concentration (5.6mM) or only 30 min at the high glucose concentration (83.3mM). 2. The insulinotropic action of theophylline cannot be attributed to contamination of the islets with exogenous glucose and is not suppressed by mannoheptulose. 3. The secretory response to theophylline is an immediate phenomenon, but disappears after 60min of exposure to the drug. 4. The release of insulin evoked by theophylline is abolished in calcium-depleted media containing EGTA. Theophylline enhances the net uptake of 45Ca by the islets. 5. Glycogen accumulates in the islets during the preincubation period, as judged by both ultrastructural and biochemical criteria. Theophylline significantly increases the rate of glycogenolysis during the final incubation in the glucose-free medium. 6. The theophylline-induced increase in glycogenolysis coincides with a higher rate of both lactate output and oxidation of endogenous 14C-labelled substrates. 7. These data suggest that stimulation of glycolysis from endogenous stores of glycogen is sufficient to provoke insulin release even in glucose-deprived islets, as if the binding of extracellular glucose to hypothetical plasma-membrane glucoreceptors is not an essential feature of the stimulus-secretion coupling process.  相似文献   

15.
The involvement of cyclic AMP-dependent protein kinase A (PKA) in the exocytotic release of insulin from rat pancreatic islets was investigated using the Rp isomer of adenosine 3',5'-cyclic phosphorothioate (Rp-cAMPS). Preincubation of electrically permeabilised islets with Rp-cAMPS (1 mM, 1 h, 4 degrees C) inhibited cAMP-induced phosphorylation of islet proteins of apparent molecular weights in the range 20-90 kDa, but did not affect basal (50 nM Ca2+) nor Ca2(+)-stimulated (10 microM) protein phosphorylation. Similarly, Rp-cAMPS (500 microM) inhibited both cAMP- (100 microM) and 8BrcAMP-induced (100 microM) insulin secretion from electrically permeabilised islets without affecting Ca2(+)-stimulated (10 microM) insulin release. In intact islets, Rp-cAMPS (500 microM) inhibited forskolin (1 microM, 10 microM) potentiation of insulin secretion, but did not significantly impair the insulin secretory response to a range of glucose concentrations (2-20 mM). These results suggest that cAMP-induced activation of PKA is not essential for either basal or glucose-stimulated insulin secretion from rat islets.  相似文献   

16.
Mobilization of intracellular calcium from beta-cell-rich pancreatic islets of ob/ob-mice was studied by measuring unidirectional 45Ca efflux at 37 degrees and 18 degrees C during perifusion with a K+-rich medium deficient in Ca2+ and Na+. Addition of 100 microM carbachol induced a prominent peak of Ca2+ efflux from islets preexposed to glucose. After cell permeabilization with digitonin D-myo-inositol 1,4,5-trisphosphate (IP3) caused glucose-dependent mobilization of calcium. In demonstrating that not only carbachol but also IP3 can mobilize calcium incorporated in response to glucose, the present data suggests that the endoplasmic reticulum participates in glucose-induced lowering of cytoplasmic Ca2+ activity in the pancreatic beta-cells.  相似文献   

17.
The muscarinic agonist, carbachol (CCh), was shown to stimulate the production of inositol phosphates (IP) in isolated cells from rabbit fundic mucosa. This stimulatory effect was time- and dose-dependent: EC50 values for IP1, IP2 and IP3 accumulation were not statistically different. The mean value was 30 +/- 8 microM (n = 6). The corresponding maximal stimulation (% of basal value) observed after 20 min incubation in the presence of 100 microM CCh was 160 +/- 15%. CCh-induced IP accumulation was abolished by atropine (Ki = 0.32 +/- 0.18 nM (n = 3)). The CCh concentrations leading to half-maximal inhibition of N-[3H]methylscopolamine binding and half-maximal IP accumulation were similar. The half-maximal value for CCh-induced aminopyrine accumulation was 8-times lower. These results indicate that IP3-mediated mobilization of intracellular Ca2+ might be involved in CCh-induced acid secretion by parietal cells.  相似文献   

18.
Atrial natriuretic peptide (ANP) levels correlate with hyperglycemia in diabetes mellitus, but ANP effects on pancreatic islet β-cell insulin secretion are controversial. ANP was investigated for short- and long-term effects on insulin secretion and mechanisms regulating secretion in isolated rat pancreatic islets. A 3-h incubation with ANP did not affect basal or glucose-stimulated islet insulin secretion. However, 7-day culture of islets with 5.5 mM glucose and ANP (1 nM - 1 μM) markedly inhibited subsequent glucose (11 mM)-stimulated insulin secretion; total islet insulin content was not affected. Following ANP removal for 24 h, the islet insulin-secretory response to glucose was restored. The insulin-secretory response to other insulin secretagogues, including α-ketoisocaproic acid, forskolin, potassium chloride, and ionomycin were also markedly inhibited by chronic exposure to ANP. However, the combination of potassium chloride and α-ketoisocaproic acid was sufficient to overcome the inhibitory effects of ANP on insulin secretion. The glucose-stimulated increases in islet ATP levels and the ATP/ADP ratio were completely inhibited in ANP 7-day-treated islets vs. control; removal of ANP for 24 h partially restored the glucose response. ANP did not affect islet glycolysis. ANP significantly increased levels of islet activated hormone-sensitive lipase and the expression of uncoupling protein-2 and peroxisome proliferator-activated receptor-δ and -α. Although islet ANP-binding natriuretic peptide receptor-A levels were reduced to 60% of control after 7-day culture with ANP, the ANP-stimulated cGMP levels remained similar to control islet levels. Thus, long-term exposure to ANP inhibits glucose-stimulated insulin secretion and ATP generation in isolated islets.  相似文献   

19.
We used the patch-clamp technique to study the effects of extracellular ATP on the activity of ion channels recorded in rat pancreatic beta-cells. In cell-attached membrane patches, action currents induced by 8.3 mM glucose were inhibited by 0.1 mM ATP, 0.1 mM ADP or 15 microM ADPbetaS but not by 0.1 mM AMP or 0.1 mM adenosine. In perforated membrane patches, action potentials were measured in current clamp, induced by 8.3 mM glucose, and were also inhibited by 0.1 mM ATP with a modest hyperpolarization to -43 mV. In whole-cell clamp experiments, ATP dose-dependently decreased the amplitudes of L-type Ca2+ channel currents (ICa) to 56.7+/-4.0% (p<0.001) of the control, but did not influence ATP-sensitive K+ channel currents observed in the presence of 0.1 mM ATP and 0.1 mM ADP in the pipette. Agonists of P2Y purinoceptors, 2-methylthio ATP (0.1 mM) or ADPbetaS (15 microM) mimicked the inhibitory effect of ATP on ICa, but PPADS (0.1 mM) and suramin (0.2 mM), antagonists of P2 purinoceptors, counteracted this effect. When we used 0.1 mM GTPgammaS in the pipette solution, ATP irreversibly reduced ICa to 58.4+/-6.6% of the control (p<0.001). In contrast, no inhibitory effect of ATP was observed when 0.2 mM GDPbetaS was used in the pipette solution. The use of either 20 mM BAPTA instead of 10 mM EGTA, or 0.1 mM compound 48/80, a blocker of phospholipase C (PLC), in the pipette solution abolished the inhibitory effect of ATP on ICa, but 1 microM staurosporine, a blocker of protein kinase C (PKC), did not. When the beta-cells were pretreated with 0.4 microM thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca2+ pump, ATP lost the inhibitory effect on ICa. These results suggest that extracellular ATP inhibits action potentials by Ca2+-induced ICa inhibition in which an increase in cytosolic Ca2+ released from thapsigargin-sensitive store sites was brought about by a P2Y purinoceptor-coupled G-protein, PI-PLC and IP3 pathway.  相似文献   

20.
Arginine vasopressin (AVP), bombesin, and ACh increase cytosolic free Ca(2+) and potentiate glucose-induced insulin release by activating receptors linked to phospholipase C (PLC). We examined whether tolbutamide and diazoxide, which close or open ATP-sensitive K(+) channels (K(ATP) channels), respectively, interact with PLC-linked Ca(2+) signals in HIT-T15 and mouse beta-cells and with PLC-linked insulin secretion from HIT-T15 cells. In the presence of glucose, the PLC-linked Ca(2+) signals were enhanced by tolbutamide (3-300 microM) and inhibited by diazoxide (10-100 microM). The effects of tolbutamide and diazoxide on PLC-linked Ca(2+) signaling were mimicked by BAY K 8644 and nifedipine, an activator and inhibitor of L-type voltage-sensitive Ca(2+) channels, respectively. Neither tolbutamide nor diazoxide affected PLC-linked mobilization of internal Ca(2+) or store-operated Ca(2+) influx through non-L-type Ca(2+) channels. In the absence of glucose, PLC-linked Ca(2+) signals were diminished or abolished; this effect could be partly antagonized by tolbutamide. In the presence of glucose, tolbutamide potentiated and diazoxide inhibited AVP- or bombesin-induced insulin secretion from HIT-T15 cells. Nifedipine (10 microM) blocked both the potentiating and inhibitory actions of tolbutamide and diazoxide on AVP-induced insulin release, respectively. In glucose-free medium, AVP-induced insulin release was reduced but was again potentiated by tolbutamide, whereas diazoxide caused no further inhibition. Thus tolbutamide and diazoxide regulate both PLC-linked Ca(2+) signaling and insulin secretion from pancreatic beta-cells by modulating K(ATP) channels, thereby determining voltage-sensitive Ca(2+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号