首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the catalysis of the hydration of carbon dioxide and dehydration of bicarbonate by human carbonic anhydrase II (HCA II), a histidine residue (His64) shuttles protons between the zinc-bound solvent molecule and the bulk solution. To evaluate the effect of the position of the shuttle histidine and pH on proton shuttling, we have examined the catalysis and crystal structures of wild-type HCA II and two double mutants: H64A/N62H and H64A/N67H HCA II. His62 and His67 both have their side chains extending into the active-site cavity with distances from the zinc approximately equivalent to that of His64. Crystal structures were determined at pH 5.1-10.0, and the catalysis of the exchange of (18)O between CO(2) and water was assessed by mass spectrometry. Efficient proton shuttle exceeding a rate of 10(5) s(-)(1) was observed for histidine at positions 64 and 67; in contrast, relatively inefficient proton transfer at a rate near 10(3) s(-)(1) was observed for His62. The observation, in the crystal structures, of a completed hydrogen-bonded water chain between the histidine shuttle residue and the zinc-bound solvent does not appear to be required for efficient proton transfer. The data suggest that the number of intervening water molecules between the donor and acceptor supporting efficient proton transfer in HCA II is important, and furthermore suggest that a water bridge consisting of two intervening water molecules is consistent with efficient proton transfer.  相似文献   

2.
We have prepared a site-specific mutant of human carbonic anhydrase (HCA) II with histidine residues at positions 7 and 64 in the active site cavity. Using a different isozyme, we have placed histidine residues in HCA III at positions 64 and 67 and in another mutant at positions 64 and 7. Each of these histidine residues can act as a proton transfer group in catalysis when it is the only nonliganding histidine in the active site cavity, except His(7) in HCA III. Using an (18)O exchange method to measure rate constants for intramolecular proton transfer, we have found that inserting two histidine residues into the active site cavity of either isozyme II or III of carbonic anhydrase results in rates of proton transfer to the zinc-bound hydroxide that are antagonistic or suppressive with respect to the corresponding single mutants. The crystal structure of Y7H HCA II, which contains both His(7) and His(64) within the active site cavity, shows the conformation of the side chain of His(64) moved from its position in the wild type and hydrogen-bonded through an intervening water molecule with the side chain of His(7). This suggests a cause of decreased proton transfer in catalysis.  相似文献   

3.
Catalysis of the hydration of CO2 by human carbonic anhydrase isozyme II (HCA II) is sustained at a maximal catalytic turnover of 1 mus-1 by proton transfer between a zinc-bound solvent and bulk solution. This mechanism of proton transfer is facilitated via the side chain of His64, which is located 7.5 A from the zinc, and mediated via intervening water molecules in the active-site cavity. Three hydrophilic residues that have previously been shown to contribute to the stabilization of these intervening waters were replaced with hydrophobic residues (Y7F, N62L, and N67L) to determine their effects on proton transfer. The structures of all three mutants were determined by X-ray crystallography, with crystals equilibrated from pH 6.0 to 10.0. A range of changes were observed in the ordered solvent and the conformation of the side chain of His64. Correlating these structural variants with kinetic studies suggests that the very efficient proton transfer (approximately 7 micros-1) observed for Y7F HCA II in the dehydration direction, compared with the wild type and other mutants of this study, is due to a combination of three features. First, in this mutant, the side chain of His64 showed an appreciable inward orientation pointing toward the active-site zinc. Second, in the structure of Y7F HCA II, there is an unbranched chain of hydrogen-bonded waters linking the proton donor His64 and acceptor zinc-bound hydroxide. Finally, the difference in pKa of the donor and acceptor appears favorable for proton transfer. The data suggest roles for residues 7, 62, and 67 in fine-tuning the properties of His64 for optimal proton transfer in catalysis.  相似文献   

4.
The rate limiting step in catalysis of bicarbonate dehydration by human carbonic anhydrase II (HCA II) is an intramolecular proton transfer from His64 to the zinc-bound hydroxide. We have examined the role of Tyr7 using site-specific mutagenesis and measuring catalysis by the 18O exchange method using membrane inlet mass spectrometry. The side chain of Tyr7 in HCA II extends into the active-site cavity about 7 Å from the catalytic zinc atom. Replacement of Tyr7 with eight other amino acids had no effect on the interconversion of bicarbonate and CO2, but in some cases caused enhancements in the rate constant of proton transfer by nearly 10-fold. The variant Y7I HCA II enhanced intramolecular proton transfer approximately twofold; its structure was determined by X-ray crystallography at 1.5 Å resolution. No changes were observed in the ordered solvent structure in the active-site cavity or in the conformation of the side chain of the proton shuttle His64. However, the first 11 residues of the amino-terminal chain in Y7I HCA II assumed an alternate conformation compared with the wild type. Differential scanning calorimetry showed variants at position 7 had a melting temperature approximately 8 °C lower than that of the wild type.  相似文献   

5.
Zheng J  Avvaru BS  Tu C  McKenna R  Silverman DN 《Biochemistry》2008,47(46):12028-12036
Catalysis by the zinc metalloenzyme human carbonic anhydrase II (HCA II) is limited in maximal velocity by proton transfer between His64 and the zinc-bound solvent molecule. Asn62 extends into the active site cavity of HCA II adjacent to His64 and has been shown to be one of several hydrophilic residues participating in a hydrogen-bonded solvent network within the active site. We compared several site-specific mutants of HCA II with replacements at position 62 (Ala, Val, Leu, Thr, and Asp). The efficiency of catalysis in the hydration of CO 2 for the resulting mutants has been characterized by (18)O exchange, and the structures of the mutants have been determined by X-ray crystallography to 1.5-1.7 A resolution. Each of these mutants maintained the ordered water structure observed by X-ray crystallography in the active site cavity of wild-type HCA II; hence, this water structure was not a variable in comparing with wild type the activities of mutants at residue 62. Crystal structures of wild-type and N62T HCA II showed both an inward and outward orientation of the side chain of His64; however, other mutants in this study showed predominantly inward (N62A, N62V, N62L) or predominantly outward (N62D) orientations of His64. A significant role of Asn62 in HCA II is to permit two conformations of the side chain of His64, the inward and outward, that contributes to maximal efficiency of proton transfer between the active site and solution. The site-specific mutant N62D had a mainly outward orientation of His64, yet the difference in p K a between the proton donor His64 and zinc-bound hydroxide was near zero, as in wild-type HCA II. The rate of proton transfer in catalysis by N62D HCA II was 5% that of wild type, showing that His64 mainly in the outward orientation is associated with inefficient proton transfer compared with His64 in wild type which shows both inward and outward orientations. These results emphasize the roles of the residues of the hydrophilic side of the active site cavity in maintaining efficient catalysis by carbonic anhydrase.  相似文献   

6.
We report the X-ray crystal structures and rate constants for proton transfer in site-specific mutants of human carbonic anhydrase III (HCA III) that place a histidine residue in the active-site cavity: K64H, R67H, and K64H-R67N HCA III. Prior evidence from the exchange of 18O between CO2 and water measured by mass spectrometry shows each mutant to have enhanced proton transfer in catalysis compared with wild-type HCA III. However, His64 in K64H and K64H-R67N HCA III have at most a capacity for proton transfer that is only 13% that of His64 in HCA II. This reduced rate in mutants of HCA III is associated with a constrained side-chain conformation of His64, which is oriented outward, away from the active-site zinc in the crystal structures. This conformation appears stabilized by a prominent pi stacking interaction of the imidazole ring of His64 with the indole ring of Trp5 in mutants of HCA III. This single orientation of His64 in K64H HCA III predominates also in a double mutant K64H-R67N HCA III, indicating that the positive charge of Arg67 does not influence the observed conformation of His64 in the crystal structure. Hence, the structures and catalytic activity of these mutants of HCA III containing His64 account only in small part for the lower activity of this isozyme compared with HCA II. His67 in R67H HCA III was also shown to be a proton shuttle residue, having a capacity for proton transfer that was approximately four times that of His64 in K64H HCA III. This is most likely due to its proximity and orientation inward towards the zinc-bound solvent. These results emphasize the significance of side chain orientation and range of available conformational states as characteristics of an efficient proton shuttle in carbonic anhydrase.  相似文献   

7.
Small molecule rescue of mutant forms of human carbonic anhydrase II (HCA II) occurs by participation of exogenous donors/acceptors in the proton transfer pathway between the zinc-bound water and solution. To examine more thoroughly the energetics of this activation, we have constructed a mutant, H64W HCA II, which we have shown is activated by 4-methylimidazole (4-MI) by a mechanism involving the binding of 4-MI to the side chain of Trp-64 approximately 8 A from the zinc. A series of experiments are consistent with the activation of H64W HCA II by the interaction of imidazole and pyridine derivatives as exogenous proton donors with the indole ring of Trp-64; these experiments include pH profiles and H/D solvent isotope effects consistent with proton transfer, observation of approximately fourfold greater activation with the mutant containing Trp-64 compared with Gly-64, and the observation by x-ray crystallography of the binding of 4-MI associated with the indole side chain of Trp-64 in W5A-H64W HCA II. Proton donors bound at the less flexible side chain of Trp-64 in W5A-H64W HCA II do not show activation, but such donors bound at the more flexible Trp-64 of H64W HCA II do show activation, supporting suggestions that conformational mobility of the binding site is associated with more efficient proton transfer. Evaluation using Marcus theory showed that the activation of H64W HCA II by these proton donors was reflected in the work functions w(r) and w(p) rather than in the intrinsic Marcus barrier itself, consistent with the role of solvent reorganization in catalysis.  相似文献   

8.
Histidine 64 in human carbonic anhydrase II (HCA II) functions in the catalytic pathway of CO(2) hydration as a shuttle to transfer protons between the zinc-bound water and bulk water. Catalysis of the exchange of (18)O between CO(2) and water, measured by mass spectrometry, is dependent on this proton transfer and was decreased more than 10-fold for H64A HCA II compared with wild-type HCA II. The loss of catalytic activity of H64A HCA II could be rescued by 4-methylimidazole (4-MI), an exogenous proton donor, in a saturable process with a maximum activity of 40% of wild-type HCA II. The crystal structure of the rescued complex at 1.6 A resolution shows 4-MI bound in the active-site cavity of H64A HCA II, through pi stacking interactions with Trp 5 and H-bonding interactions with water molecules. In this location, 4-MI is about 12 A from the zinc and approximates the observed "out" position of His 64 in the structure of the wild-type enzyme. 4-MI appears to compensate for the absence of His 64 and rescues the catalytic activity of the H64A HCA II mutant. This result strongly suggests that the out conformation of His 64 is effective in the transfer of protons between the zinc-bound solvent molecule and solution.  相似文献   

9.
The maximal turnover rate of CO2 hydration catalyzed by the carbonic anhydrases is limited by proton transfer steps from the zinc-bound water to solution, steps that regenerate the catalytically active zinc-bound hydroxide. Catalysis of CO2 hydration by wild-type human carbonic anhydrase III (HCA III) (k(cat) = 2 ms (-1)) is the least efficient among the carbonic anhydrases in its class, in part because it lacks an efficient proton shuttle residue. We have used site-directed mutagenesis to test positions within the active-site cavity of HCA III for their ability to carry out proton transfer by replacing various residues with histidine. Catalysis by wild-type HCA III and these six variants was determined from the initial velocity of hydration of CO2 measured by stopped-flow spectrophotometry and from the exchange of 18O between CO2 and H2O at chemical equilibrium by mass spectrometry. The results show that histidine at three positions (Lys64His, Arg67His and Phe131His) have the capacity to transfer protons during catalysis, enhancing maximal velocity of CO2 hydration and 18O exchange from 4- to 15-fold compared with wild-type HCA III. Histidine residues at the other three positions (Trp5His, Tyr7His, Phe20His) showed no firm evidence for proton transfer. These results are discussed in terms of the stereochemistry of the active-site cavity and possible proton transfer pathways.  相似文献   

10.
We investigated the efficiency of glutamic acid 64 and aspartic acid 64 as proton donors to the zinc-bound hydroxide in a series of site-specific mutants of human carbonic anhydrase III (HCA III). Rate constants for this intramolecular proton transfer, a step in the catalyzed dehydration of bicarbonate, were determined from the proton-transfer-dependent rates of release of H2 18O from the enzyme measured by mass spectrometry. The free energy plots representing these rate constants could be fit by the Marcus rate theory, resulting in an intrinsic barrier for the proton transfer of deltaG0++ = 2.2 +/- 0.5 kcal/mol, and a work function or thermodynamic contribution to the free energy of reaction wr = 10.8 +/- 0.1 kcal/mol. These values are very similar in magnitude to the Marcus parameters describing intramolecular proton transfer from His64 and His67 to the zinc-bound hydroxide in mutants of HCA III. That result and the equivalent efficiency of Glu64 and Asp64 as proton donors in the catalysis by CA III demonstrate a lack of specificity in proton transfer from these sites, which is indirect evidence of a number of proton conduction pathways through different structures of intervening water chains. The dominance of the thermodynamic contribution or work function for all of these proton transfers is consistent with the view that formation and breaking of hydrogen bonds in such water chains is a limiting factor for proton translocation.  相似文献   

11.
The undisputed role of His64 in proton transfer during catalysis by carbonic anhydrases in the α class has raised questions concerning the details of its mechanism. The highly conserved residues Tyr7, Asn62, and Asn67 in the active-site cavity function to fine tune the properties of proton transfer by human carbonic anhydrase II (HCA II). For example, hydrophobic residues at these positions favor an inward orientation of His64 and a low pKa for its imidazole side chain. It appears that the predominant manner in which this fine tuning is achieved in rate constants for proton transfer is through the difference in pKa between His64 and the zinc-bound solvent molecule. Other properties of the active-site cavity, such as inward and outward conformers of His64, appear associated with the change in ΔpKa; however, there is no strong evidence to date that the inward and outward orientations of His64 are in themselves requirements for facile proton transfer in carbonic anhydrase.  相似文献   

12.
The maximal velocity of catalysis of CO(2) hydration by human carbonic anhydrase II (HCA II) requires proton transfer from zinc-bound water to solution assisted by His 64. The catalytic activity of a site-specific mutant of HCA II in which His 64 is replaced with Ala (H64A HCA II) can be rescued by exogenous proton donors/acceptors, usually derivatives of imidazole and pyridine. X-ray crystallography has identified Trp 5 as a binding site of the rescue agent 4-methylimidazole (4-MI) on H64A HCA II. This binding site overlaps with the "out" position in which His 64 in wild-type HCA II points away from the zinc. Activation by 4-MI as proton donor/acceptor in catalysis was determined in the dehydration direction using (18)O exchange between CO(2) and water and in the hydration direction by stopped-flow spectrophotometry. Replacement of Trp 5 by Ala, Leu, or Phe in H64A HCA II had no significant effect on enhancement by 4-MI of maximal rate constants for proton transfer in catalysis to levels near 10(5) s(-1). This high activity for chemical rescue indicates that the binding site of 4-MI at Trp 5 in H64A HCA II appears to be a nonproductive binding site, although it is possible that a similarly effective pathway for proton transfer exists in the mutants lacking Trp 5. Moreover, the data suggest that the out position of His 64 considered alone is not active in proton transfer in HCA II. In contrast to isozyme II, the replacement of Trp 5 by Ala in HCA III abolished chemical rescue of k(cat) by imidazole but left k(cat)/K(m) for hydration unchanged. This demonstrates that Trp 5 contributes to the predominant productive binding site for imidazole, with a maximal level for the rate constant of proton transfer near 10(4) s(-1). This difference in the susceptibility of CA II and III to chemical rescue may be related to the more sterically constrained and electrostatically positive nature of the active site cavity of CA III compared with CA II. The possibility of nonproductive binding sites for exogenous proton donors offers an explanation for the unusually low value of the intrinsic kinetic barrier obtained by application of Marcus theory to chemical rescue of H64A HCA II.  相似文献   

13.
Maupin CM  Voth GA 《Biochemistry》2007,46(11):2938-2947
Histidine at position 64 (His64) in human carbonic anhydrase II (HCA II) is believed to be the proton acceptor in the hydration direction and the proton donor in the dehydration direction for the rate-limiting proton transfer (PT) event. Although the biochemical effect of histidine at position 64 has been thoroughly investigated, the role of its orientation in the PT event is a topic of considerable debate. X-ray data of HCA II suggests that His64 can adopt either an "in" or "out" orientation. The "in" orientation is believed to be favored for the hydration direction PT event because the Ndelta of His64 is closer to the catalytic zinc. This orientation allows for smaller water bridges, which are postulated to be more conducive to PT. In the present work, classical molecular dynamics simulations have been conducted to elucidate the role that the His64 orientation may play in its ability to act as a proton donor/acceptor in HCA II. The free energy profile for the orientation of His64 suggests that the histidine will adopt an "in" orientation in the hydration direction, which brings Ndelta in close proximity to the catalytic zinc. When the histidine becomes protonated, it then rotates to an "out" orientation, creating a more favorable solvation environment for the protonated His64. In this "out" orientation, the imidazole ring releases the delta nitrogen's excess proton into the bulk environment. After the second PT event and when the zinc-bound water is regenerated, the His64 is again favored to reorient to the "in" orientation, completing the catalytic cycle.  相似文献   

14.
The tryptophan residue Trp5, highly conserved in the α class of carbonic anhydrases including human carbonic anhydrase II (HCA II), is positioned at the entrance of the active site cavity and forms a π-stacking interaction with the imidazole ring of the proton shuttle His64 in its outward orientation. We have observed that replacement of Trp5 in HCA II caused significant structural changes, as determined by X-ray diffraction, in the conformation of 11 residues at the N-terminus and in the orientation of the proton shuttle residue His64. Most significantly, two variants W5H and W5E HCA II had His64 predominantly outward in orientation, while W5F and wild type showed the superposition of both outward and inward orientations in crystal structures. Although Trp5 influences the orientation of the proton shuttle His64, this orientation had no significant effect on the rate constant for proton transfer near 1 μs−1, determined by exchange of 18O between CO2 and water measured by mass spectrometry. The apparent values of the pKa of the zinc-bound water and the proton shuttle residue suggest that different active-site conformations influence the two stages of catalysis, the proton transfer stage and the interconversion of CO2 and bicarbonate.  相似文献   

15.
The imidazole (15)N signals of histidine 64 (His(64)), involved in the catalytic function of human carbonic anhydrase II (hCAII), were assigned unambiguously. This was accomplished by incorporating the labeled histidine as probes for solution NMR analysis, with (15)N at ring-N(delta1) and N(epsilon2), (13)Cat ring-Cepsilon1, (13)C and (15)N at all carbon and nitrogen, or (15)N at the amide nitrogen and the labeled glycine with (13)C at the carbonyl carbon. Using the pH dependence of ring-(15)N signals and a comparison between experimental and simulated curves, we determined that the tautomeric equilibrium constant (K(T)) of His(64) is 1.0, which differs from that of other histidine residues. This unique value characterizes the imidazole nitrogen atoms of His(64) as both a general acid (a) and base (b): its epsilon2-nitrogen as (a) releases one proton into the bulk, whereas its delta1-nitrogen as (b) extracts another proton from a water molecule within the water bridge coupling to the zinc-bound water inside the cave. This accelerates the generation of zinc-bound hydroxide to react with the carbon dioxide. Releasing the productive bicarbonate ion from the inside separates the water bridge pathway, in which the next water molecules move into beside zinc ion. A new water molecule is supplied from the bulk to near the delta1-nitrogen of His(64). These reconstitute the water bridge. Based on these features, we suggest here a catalytic mechanism for hCAII: the tautomerization of His(64) can mediate the transfers of both protons and water molecules at a neutral pH with high efficiency, requiring no time- or energy-consuming processes.  相似文献   

16.
Tu C  Rowlett RS  Tripp BC  Ferry JG  Silverman DN 《Biochemistry》2002,41(51):15429-15435
Catalysis of the dehydration of HCO(3)(-) by carbonic anhydrase requires proton transfer from solution to the zinc-bound hydroxide. Carbonic anhydrases in each of the alpha, beta, and gamma classes, examples of convergent evolution, appear to have a side chain extending into the active site cavity that acts as a proton shuttle to facilitate this proton transfer, with His 64 being the most prominent example in the alpha class. We have investigated chemical rescue of mutants in two of these classes in which a proton shuttle has been replaced with a residue that does not transfer protons: H216N carbonic anhydrase from Arabidopsis thaliana (beta class) and E84A carbonic anhydrase from the archeon Methanosarcina thermophila (gamma class). A series of structurally homologous imidazole and pyridine buffers were used as proton acceptors in the activation of CO(2) hydration at steady state and as proton donors of the exchange of (18)O between CO(2) and water at chemical equilibrium. Free energy plots of the rate constants for this intermolecular proton transfer as a function of the difference in pK(a) of donor and acceptor showed extensive curvature, indicating a small intrinsic kinetic barrier for the proton transfers. Application of Marcus rate theory allowed quantitative estimates of the intrinsic kinetic barrier which were near 0.3 kcal/mol with work functions in the range of 7-11 kcal/mol for mutants in the beta and gamma class, similar to results obtained for mutants of carbonic anhydrase in the alpha class. The low values of the intrinsic kinetic barrier for all three classes of carbonic anhydrase reflect proton transfer processes that are consistent with a model of very rapid proton transfer through a flexible matrix of hydrogen-bonded solvent structures sequestered within the active sites of the carbonic anhydrases.  相似文献   

17.
In the site-specific mutant of human carbonic anhydrase in which the proton shuttle His64 is replaced with alanine, H64A HCA II, catalysis can be activated in a saturable manner by the proton donor 4-methylimidazole (4-MI). From 1H NMR relaxivities, we found 4-MI bound as a second-shell ligand of the tetrahedrally coordinated cobalt in Co(II)-substituted H64A HCA II, with 4-MI located about 4.5 A from the metal. Binding constants of 4-MI to H64A HCA II were estimated from: (1) NMR relaxation of the protons of 4-MI by Co(II)-H64A HCA II, (2) the visible absorption spectrum of Co(II)-H64A HCA II in the presence of 4-MI, (3) the inhibition by 4-MI of the catalytic hydration of CO2, and (4) from the catalyzed exchange of 18O between CO2 and water. These experiments along with previously reported crystallographic and catalytic data help identify a range of distances at which proton transfer is efficient in carbonic anhydrase II.  相似文献   

18.
The hydration of CO2 catalyzed by human carbonic anhydrase II (HCA II) is accompanied by proton transfer from the zinc-bound water of the enzyme to solution. We have replaced the proton shuttling residue His 64 with Ala and placed cysteine residues within the active-site cavity by mutating sites Trp 5, Asn 62, Ile 91, and Phe 131. These mutants were modified at the single inserted cysteine with imidazole analogs to introduce new potential shuttle groups. Catalysis by these modified mutants was determined by stopped-flow and 18O-exchange methods. Specificity in proton transfer was demonstrated; only modifications of the Cys 131-containing mutant showed enhancement in the proton transfer step of catalysis compared with unmodified Cys 131-containing mutant. Modifications at other sites resulted in up to 3-fold enhancement in rates of CO2 hydration, with apparent second-order rate constants near 350 microM(-1) s(-1). These are among the largest values of kcat/Km observed for a carbonic anhydrase.  相似文献   

19.
Human carbonic anhydrase II (HCA II) is a zinc-metalloenzyme that catalyzes the reversible interconversion of CO2 and HCO3-. The rate-limiting step of this catalysis is the transfer of a proton between the Zn-bound solvent molecule and residue His64. In order to fully characterize the active site structural features implicated in the proton transfer mechanism, the refined X-ray crystal structure of uncomplexed wild type HCA II to 1.05 A resolution with an Rcryst value of 12.0% and an Rfree value of 15.1% has been elucidated. This structure provides strong clues as to the pathway of the intramolecular proton transfer between the Zn-bound solvent and His64. The structure emphasizes the role of the solvent network, the unique positioning of solvent molecule W2, and the significance of the dual conformation of His64 in the active site. The structure is compared with molecular dynamics (MD) simulation calculations of the Zn-bound hydroxyl/His64+ (charged) and the Zn-bound water/His64 (uncharged) HCA II states. A comparison of the crystallographic anisotropic atomic thermal parameters and MD simulation root-mean-square fluctuation values show excellent agreement in the atomic motion observed between the two methods. It is also interesting that the observed active site solvent positions in the crystal structure are also the most probable positions of the solvent during the MD simulations. On the basis of the comparative study of the MD simulation results, the HCA II crystal structure observed is most likely in the Zn-bound water/His64 state. This conclusion is based on the following observations: His64 is mainly (80%) orientated in an inward conformation; electron density omit maps infer that His64 is not charged in an either inward or outward conformation; and the Zn-bound solvent is most likely a water molecule.  相似文献   

20.
J Y Liang  W N Lipscomb 《Biochemistry》1988,27(23):8676-8682
The energy barrier for the intramolecular proton transfer between zinc-bound water and His 64 in the active site of human carbonic anhydrase II (HCA II) has been studied at the partial retention of diatomic differential overlap (PRDDO) level. The most important stabilizing factor for the intramolecular proton transfer is the zinc ion, which lowers the pKa of zinc-bound water and electrostatically repels the proton. The energy barrier of 127.5 kcal/mol for proton transfer between a water dimer is completely removed in the presence of the zinc ion. The zinc ligands, which donate electrons to the zinc ion, raise the barrier slightly to 34 kcal/mol for a 4-coordinated zinc complex including three imidazole ligands from His 94, His 96, and His 119 and to 54 kcal/mol for the 5-coordinated zinc complex including the fifth water ligand. A few model calculations indicate that these energy barriers are expected to be reduced to within experimental range (approximately 10 kcal/mol) when large basis set, correlation energies, and molecular dynamics are considered. The proton-transfer group, which functions as proton receiver in the intramolecular proton transfer, helps to attract the proton; and the partially ordered active site water molecules are important for proton relay function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号