首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abscission: role of abscisic Acid   总被引:12,自引:9,他引:3       下载免费PDF全文
The effect of abscisic acid on cotton (Gossypium hirsutum L. cv. Acala 4-42) and bean (Phaseolus vulgaris L. cv. Red Kidney) explants was 2-fold. It increased ethylene production from the explants, which was found to account for some of its ability to accelerate abscission. Absci is acid also increased the activity of cellulase. Increased synthesis of cellulase was not du to an increase in aging of the explants but rather was an effect of abscisic acid on the processes that lead to cellulase synthesis or activity.  相似文献   

2.
The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves.  相似文献   

3.
The occurrence of enzymes associated with bean leaf abscission was investigated in bean (Phaseolus vulgaris) flower reproductive organs in which catabolic cell wall events are essential during anther and pistil development. Cellulase activity was detected in high levels in both pistil and anthers of bean flowers before anthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting with 9.5 cellulase antibody identified a protein in anthers and pistil with the same size (51 kilodaltons) and serologically closely related to the abscission cellulase. The accumulation of 9.5 cellulase protein in the anther is developmentally regulated and increases from undetectable levels at very young stages of anther development to high levels as the anther matures. In the pistil, the 9.5 cellulase was localized in the upper part of the pistil where the stigma and the stylar neck reside and was detected in the youngest developmental stage analyzed. Antibodies against basic chitinase, which accumulates to high levels in abscission zones after exposure to ethylene, identified a protein with the same size (33 kilodaltons) and serologically closely related, in both anthers and upper portion of the pistil. In contrast, a 45-kilodalton protein and the basic β-1,3-glucanase associated with abscission were undetected in bean reproductive organs. Interestingly, β-1,3-glucanase activity was detected in young bean anthers and decreased at anthesis, but the anther β-1,3-glucanase is serologically unrelated to the basic β-1,3-glucanase. Thus, it appears that the basic cellulase and chitinase occur in combination in many plant processes that require major cell wall disruption, whereas hemicellulases such as β-1,3-glucanase are specific to each process.  相似文献   

4.
When abscission in leaf explants from Phaseolus vulgaris, cultivar Red Kidney, was allowed to proceed while the explants were in 2H2O, a 1.25% increase in the buoyant density of cellulase in a cesium chloride gradient was observed. These data indicate that the increase in cellulase activity during abscission is a result of the synthesis of new protein. Two differentially soluble forms of cellulase are present in the abscission zone. The form which is soluble only in a high salt buffer seems more closely related to the abscission process than the form which is soluble in dilute buffer. The correlation between changes in pull force and increase in cellulase activity and the effects of several hormones on cellulase activity are discussed.  相似文献   

5.
Cellulase (β-1, 4-glucan-glucanohydrolase EC 3.2.1.4) activity in the abscission zone of red kidney bean (Phaseolus vulgaris) was previously shown to exist in at least two different molecular forms. The form of the enzyme which has an isoelectric point of 4.5 is present in both abscising and nonabscising tissue and requires grinding for extraction. Another form of the enzyme which has an isoelectric point of 9.5 is present only in tissue in which the abscission process has been induced. Further, much of this form of cellulase can be removed from the tissue by vacuum infiltration with buffer. Time course studies indicate that while the increase in measurable cellulase activity in tissue which is actively undergoing abscission was due primarily to the appearance of cellulase 9.5, this form of the enzyme cannot be removed by vacuum infiltration until after the breakstrength of the abscission zone has decreased nearly to zero. The intracellular localization of these two forms of cellulase is discussed.  相似文献   

6.
The physiology and anatomy of abscission has been studied in considerable detail; however, information on the regulation of gene expression in abscission has been limited because of a lack of probes for specific genes. We have identified and sequenced a 595 nucleotide bean (Phaseolus vulgaris cv Red Kidney) abscission cellulase cDNA clone (pBACl). The bean cellulase cDNA has extensive nucleic and amino acid sequence identity with the avocado cellulase cDNA pAV363. The 2.0 kilobase bean mRNA complementary to pBACl codes for a polypeptide of approximately 51 kilodalton (shown by hybrid-selection followed by in vitro translation). Bean cellulase antiserum is shown to immunoprecipitate a 51 kilodalton polypeptide from the in vitro translation products of abscission zone poly(A)+ RNA. Ethylene initiates bean leaf abscission and tissue-specific expression of cellulase mRNA. If ethylene treatment of bean explants was discontinued after 31 h and then 2,5-norbornadiene given to inhibit responses resulting from endogenously synthesized ethylene, polysomal cellulase mRNA hybridizing to pBACl decreased. Thus, ethylene is required not only to initiate abscission and cellulase gene expression but also to maintain continued accumulation of cellulase mRNA. Explants treated with auxin 4 hours prior to a 48 hour treatment with ethylene showed no substantial accumulation of RNA hybridizing to pBACl or expression of cellulase activity.  相似文献   

7.
Dwelle RB 《Plant physiology》1975,56(4):529-534
Stem-petiole explants from the lower pulvinus of the primary leaves of Phaseolus vulgaris L. cv. Red Kidney and from Impatiens sultani Hook cv. Scarlet Baby were exposed to varying dosages of γ-radiation. With bean, irradiation of 175 to 525 kiloroentgens (kR) significantly accelerated the onset of abscission with a maximum response at 175 to 280 kR. Higher dosages (beginning at 600-700 kR) usually prevented abscission. With Impatiens, 18 to 35 kR significantly accelerated both the onset of abscission and possibly the initial abscission rate; 350 kR cut the time to 100% abscission in half and substantially accelerated the initial abscission rate. Inhibition of abscission in Impatiens was not possible with the available dose rate (35 kR/hour).  相似文献   

8.
The role of α-naphthaleneacetic acid (NAA) in the control of abscission in Citrus (Citrus sinensis L. Osbeck) leaf explants and its conjugation were studied in non-aged and 24-hour-aged explants. Dipping non-aged explants in 1.5 micromolar NAA for 15 minutes immediately after excision did not delay abscission whereas 150 micromolar NAA effectively delayed it. As incubation time was prolonged up to 24 hours after excision, the delaying effect of both concentrations gradually increased. In general, both concentrations did not delay abscission when applied to 24-hour-aged explants held for an additional period of up to 24 hours. The uptake and conjugation of 14C-NAA to glucose and aspartic acid were similar in petiole, abscission zone, and leaf blade of non-aged and aged tissues, for all NAA concentrations. No correlation was established between the kinetics of abscission and the rate of conjugation in the abscission zone.  相似文献   

9.
Time course changes were observed in petiole and stem anatomy and cellulase enzyme patterns in bean (Phaseolus vulgaris L.) explants when 10−5 or 10−2m indoleacetic acid in lanolin paste was applied to acropetal cut surfaces in the presence or absence of ethylene. Auxin (10−2m) in the presence of ethylene stimulated rapid ordered cell division and dedifferentiation, with ensuing lateral root formation. Auxin (10−5m) caused moderate cortical swelling, pit formation in pith parenchyma, and chloroplast development in certain cortical cells. Exogenous ethylene reduced cell division activity and caused cortical cell swelling and separation. Removal of endogenously generated ethylene by mercuric perchlorate resulted in less ordered cell division patterns and no lateral root formation. Auxin treatments enhanced formation of an active acidic pI cellulase, exogenous ethylene-stimulated formation of an active basic pI cellulase. The absence of basic pI cellulase activity by the removal of endogenously generated ethylene suggests a close dependence of basic pI cellulase activity on ethylene.  相似文献   

10.
Burt GW  Muzik TJ 《Plant physiology》1971,47(6):795-798
The influence of indoleacetic acid, cacodylic acid (hydroxy-dimethylarsine oxide), and amitrole (3-amino-1,2,4-triazole) on the petiole explant abscission rate was studied in three species. Indoleacetic acid increased the abscission rate in both bean (Phaseolus vulgaris L. var. Red Kidney) and Coleus (Coleus blumei Benth) at 10−3 and 10−4m but had no effect on abscission in privet (Ligustrum ovalifolium). Cacodylic acid was found to stimulate abscission in explants of beans and privet, but not in Coleus. Amitrole did not stimulate abscission under any circumstance tested. In no case was the abscission rate dependent on the time at which any of the chemicals was applied. These data do not support the two-phase response of explants to applied auxin.  相似文献   

11.
Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO3, and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, and their effect on senescence was followed by measuring chlorophyll and soluble protein in the distal (pulvinus) sections. AVG at concentrations between 1 and 100 micromolar inhibited ethylene synthesis by about 80 to 90% compared to the control during sampling periods of 24 and 48 hours after treatment. This compound also delayed the development of abscission and senescence. Treatment with AgNO3 at concentrations between 1 and 100 micromolar progressively reduced ethylene production, but to a lesser extent than AVG. The effects of AgNO3 on senescence and abscission were quite similar to those of AVG. Sodium benzoate at 50 micromolar to 5 millimolar did not inhibit ethylene synthesis during the first 24 hours, but appreciably inhibited ethylene synthesis 48 hours after treatment. It also delayed the development of abscission and senescence. The effects of AVG, Ag+, and sodium benzoate suggest that ethylene could play a major role in both the senescence induction phase and the separation phase in bean explants.  相似文献   

12.
Sodium phosphate buffer was used to extract cellulases from the plant solids fraction of rumen contents. The mixed cellulase preparation had maximal activity at pH 6.9 and 49°C. The Vmax and the apparent Km for wheaten hay cellulose were 19.8 glucose units/min and 6.35 mg/ml, respectively, and for microcrystalline cellulose (Sigmacell) at the same enzyme concentration, they were 33 glucose units/min and 27.5 mg/ml, respectively. For these assays a glucose unit was defined as nanomoles of glucose plus twice the nanomoles of cellobiose. Consideration of thermodynamic and kinetic data suggested that the hydrolysis of a relatively labile arabino-xylan comprising 3% of the wheaten hay cellulose was dependent on prior removal of the protecting β-1,4-glucose chains at the outer surface of the cellulose preparation. Sequential removal of structural polysaccharides from the plant cell wall rendered the latter more susceptible to cellulase activity. Cellulase activity was stimulated by increasing the concentration of phosphate from 5 to 50 mM. The stimulation was magnified in the presence of cell-free rumen fluid. Cellulase activity was not stimulated by calcium, magnesium, iron, zinc, manganese, copper, or cobalt ions and was unaffected by the chelators ethylenediaminetetraacetic acid and ethyleneglycol-bis (β-aminoethyl ether)-N,N′-tetraacetic acid. O-phenanthroline inhibited activity by 30 to 50%, but this may have been due to nonchelate properties. Anaerobic conditions or thiol protective agents were not essential for either the activity or stability of the cellulases during assay. An ultrafiltrable inhibitor of cellulase activity was detected in cell-free rumen fluid.  相似文献   

13.
Membranes isolated from abscission zones of Phaseolus vulgaris L., cv. Red Kidney, contained cellulase activity. This particulate activity was enhanced 10- to 20-fold by treatment with Triton X-100. Sucrose density gradient analyses of cell fractions showed that the membranes with which cellulase was associated had a peak equilibrium density of 1.16 to 1.17 g/cm3 which coincided with that of ion-activated ATPase, a marker for plasma membranes. The membrane fraction having the highest cellulase activity also contained a high proportion of plasma membranes as shown by electron microscopy of sucrose density gradient fractions after staining by periodic acid-chromic acid-phosphotungstic acid. It was concluded that the particulate cellulase was associated with the plasma membrane.  相似文献   

14.
Treatment with dimethipin (2,3-dihydro-5,6-dimethyl-1,4-dithiin 1,1,4,4 tetroxide) inhibited the increase in cellulase activity and decrease in breakstrength associated with the normal course of abscission in Coleus. Application of the surfactant UBI-1126 (Emery OAL 20 in isopropyl alcohol) increased cellulase activity and accelerated the process of abscission in Coleus expiants within 24 h of application. Cellulase activity was localized histochemically at the electron microscopic level in surfactant-treated tissue. The enzyme activity was localized primarily in the cell wall, middle lamella, and paramural bodies of abscission zone cells.  相似文献   

15.
McDougall GJ  Fry SC 《Plant physiology》1990,93(3):1042-1048
Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose4· xylose3 (XG7) core. The substituted oligosaccharides XG8 (glucose4· xylose3· galactose) and XG9n (glucose4· xylose3· galactose2) were more effective than XG7 itself and XG9 (glucose4· xylose3· galactose· fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10−4 molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of [3H]xyloglucan to ethanol-soluble fragments. This suggest that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products). We suggest that the promotion of midchain xyloglucan cleavage, by loosening the primary cell wall matrix, explains the promotion of growth by the oligosaccharides.  相似文献   

16.
研究了无核白葡萄(Vitis vinifera L.)采后贮藏过程中离区纤维素酶、果胶酯酶(Pectinesterase,PE)、多聚半乳糖醛酸酶(polygalacturonase,PG)、脂氧合酶(lipoxygenase,LOX)和过氧化物酶(peroxidase,POD)活性的变化与落粒的关系及植物生长调节物质对其的影响。结果表明,葡萄在贮藏过程中,伴随浆果落粒的增加,离区纤维素酶、PG、LOX、POD活性升高,PE活性下降。离区纤维素酶、PG、LOX等酶的活性与葡萄落粒程度之间呈显著正相关。外源ABA和CEPA处理能增强离区纤维素酶、PG、LOX活性,促进落粒;GA3,IAA处理则能抑制离区纤维素酶、PG、LOX活性,减轻落粒。ABA对落粒的促进效应及GA3对纤维素酶活性和落粒的抑制效应尤为明显,表明GA3与ABA比值在葡萄采后落粒过程中起重要的作用。  相似文献   

17.
Only one form of membrane-associated cellulase was found previously in the lower petiolar pulvinus of Phaseolus vulgaris (cv Red Kidney). The cellulase has an isoelectric point (pI) of 4.5 (DE Koehler, LN Lewis 1979 Plant Physiol 63: 677-679). This enzyme was detected in abscission zones collected before the onset of abscission (control tissue), and was thought to represent a pre-secretory form of another cellulase, the abscission cellulase, which has a basic pI and is secreted during abscission. We now show that this acidic, membrane-associated cellulase is a glycoprotein, tightly bound to the membrane, with maximum activity at pH 5.1, and that it is not immunologically related to the abscission cellulase. Furthermore, when bean explants are induced to abscise with ethylene, the activity of the acidic cellulase declines rapidly to 50% of control levels in the first day. When abscission is fully developed, the membranes contain a basic form of cellulase with a pI of 8.0 to 9.0 and only trace levels of the acidic cellulase. The basic form is not a high mannose glycoprotein; it has maximum activity in a broad pH range (4.0-8.0) and is antigenically related to the abscission cellulase, which is induced during abscission and transported to the cell wall. Antibody raised against the abscission cellulase recognized two proteins in a crude membrane fraction from abscising tissue. One of those proteins comigrated with the abscission cellulase, and the other was 1 to 2 kilodaltons larger. Thus, during abscission, the acidic membrane-associated cellulase rapidly declines before the appearance of the abscission cellulase. We conclude that there is no conversion from the acidic cellulase to the basic cellulase and suggest that the acidic and basic cellulase isoenzymes are proteins derived from two different genes.  相似文献   

18.
The activity of pectin esterase and cellulase in abscission of citrus explants was studied. No relation was established between pectin esterase and abscission, while cellulase activity was markedly increased before abscission and for a certain period after excision. IAA and cycloheximide delay abscission and cellulase activity, while ethylene and, to a lesser extent, GA3 accelerate them. Application of cycloheximide during the lag period and before cellulase activity can be measured, inhibits to a certain extent the formation of cellulase. An escape from the inhibitory effect of cycloheximide is detected when inhibitor is supplied at the end of the lag period.  相似文献   

19.
A fundamental event in abscission is the breakdown of cell wall material in a discrete zone of cells known as the separation layer. Three dimensional images produced by viewing tissue prints of abscission zones on nitrocellulose (NC) membranes with incident illumination showed changes in the tissue integrity taking place in the separation layer as the process of abscission proceeded. The cell softening which occurs due to the dissolution of the cell wall appeared in the tissue prints as a diffuse line at the anatomical transition between the pulvinus and petiole and was easily observed on NC tissue prints of either longitudinal or serial cross-sections through abscission zones. In bean leaf abscission the dissolution of cell walls has been correlated with the appearance of a form of cellulase with an isoelectric point of pH 9.5. Antibodies specific for this enzyme were used to study the localization of 9.5 cellulase in the distal abscission zone of Phaseolus vulgaris L., cv Red Kidney after tissue printing on NC. It was found that 9.5 cellulase was localized in the separation layer but also occurred in the vascular tissue of the adjacent pulvinus. No antibody binding was observed in nonabscising tissue or preimmune controls. These results confirm previous biochemical studies and demonstrate that immunostaining of nitrocellulose tissue prints is a fast and reliable method to localize proteins or enzymes in plant tissue.  相似文献   

20.
Sagee O  Goren R  Riov J 《Plant physiology》1980,66(4):750-753
The question whether abscisic acid (ABA) induces cellulase and polygalacturonase activity and, hence, abscission directly or whether its action is mediated by C2H4 was studied in citrus (Osbeck var. Shamouti) leaf explants using aminoethoxyvinyl glycine (AVG), an inhibitor of C2H4 biosynthesis. ABA in concentrations of 10 micromolar and higher induced C2H4 production and accelerated abscission. AVG inhibited C2H4 formation, activity of cellulase and polygalacturonase, and abscission in ABA-treated explants. AVG did not inhibit the increase in the activity of the cell-wall degrading enzymes or abscission in a saturating level of externally supplied C2H4. This indicates that the effect of AVG resulted from inhibition of the formation of endogenous ethylene. The data indicate that in citrus leaf explants the induction of the activity of cellulase and polygalacturonase and abscission by ABA is mediated by C2H4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号