首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure-specific ChSI nuclease from wheat (Triticum vulgare) chloroplast stroma has been previously purified and characterized in our laboratory. It is a single-strand-specific DNA and RNA endonuclease. Although the enzyme has been initially characterized and used as a structural probe, its biological function is still unknown. Localization of the ChSI enzyme inside chloroplasts, possessing their own DNA that is generally highly exposed to UV light and often affected by numerous redox reactions and electron transfer processes, might suggest, however, that this enzyme could be involved in DNA repair. The repair of some types of DNA damage has been shown to proceed through branched DNA intermediates which are substrates for the structure-specific DNA endonucleases. Thus we tested the substrate specificity of ChSI endonuclease toward various branched DNAs containing 5' flap, 5' pseudoflap, 3' pseudoflap, or single-stranded bulged structural motifs. It appears that ChSI has a high 5' flap structure-specific endonucleolytic activity. The catalytic efficiency (k(cat)/K(M)) of the enzyme is significantly higher for the 5' flap substrate than for single-stranded DNA. The ChSI 5' flap activity was inhibited by high concentrations of Mg(2+), Mn(2+), Zn(2+), or Ca(2+). However, low concentrations of divalent cations could restore the loss of ChSI activity as a consequence of EDTA pretreatment. In contrast to other known 5' flap nucleases, the chloroplast enzyme ChSI does not possess any 5'-->3' exonuclease activity on double-stranded DNA. Therefore, we conclude that ChSI is a 5' flap structure-specific endonuclease with nucleolytic activity toward single-stranded substrates.  相似文献   

2.
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.  相似文献   

3.
Ehrlich ascites cells were pulse-labeled with [3H]thymidine and subjected to prolonged labeling with [14C]thymidine. The isolated nuclei were digested with the restriction endonuclease BspRI and then processed to yield a 'matrix fraction' and a 'non-matrix fraction'. The DNA fragments purified from these fractions and from whole digested nuclei were examined for nitrocellulose-binding sites before and after digestion with single-strand-specific (S1) nuclease. Both, pulse-labeled and long-time-labeled fragments, isolated from the matrix fraction, exhibited a significantly increased content of nitrocellulose-binding sites. The major portion of these sites were rendered non-binding by digestion with single-strand-specific nuclease and consisted most probably of structures exposing relatively small stretches of non-base-paired DNA. The nature of the minor portion of binding sites which was insensitive to single-strand-specific nuclease is not clear. Both types of binding sites are possible candidates for mediating the attachment of DNA to the nuclear matrix.  相似文献   

4.
An alkaline nuclease was purified from microplasmodia of Physarum polycephalum. The nuclease, active on denatured DNA and RNA and free of contamination by other nucleolytic activities, appeared to be a zinc-metallo protein. The enzyme was only active under conditions, where Zn2+ were retained in the enzyme. Loss of zinc occurred by the chelating action of EDTA, EGTA or ampholines, by acid of highly alkaline pH conditions or by high ionic strength. The addition of ZnCl2 to compensate losses, restored all activity, while all other divalent cations caused inhibition. The nuclease, with a molecular weight of 32 000, was stable at neutral pH at high temperatures with a half-life of 20 min at 80 degrees C. It was inhibited by any salt of buffer concentration above the level of zero ionic strength and showed a special sensitivity towards phosphate ions. The possible similarity of this enzyme to nuclease S1 from Aspergillus oryzae is pointed out.  相似文献   

5.
A single-strand-specific endonuclease from mung bean sprouts is widely usedin molecular biology. However, the biological role of this enzyme is unknown. We studied the spatial and temporal activity of single-stranded DNA endonucleases in mung bean seedling by following enzyme activity that linearizes supercoiled plasmid DNA, a characteristic of this type of enzyme. The formation of a linear molecule from supercoiled DNA was found to occur in two distinguishable steps. The first, which involves introducing a nick into the supercoiled DNA and relaxing it, is very rapid and complete within a few seconds. The second step of cleaving the opposite strand to generate a unit-length linear duplex DNA is a relatively slow process. Analysis of the DNA cleavage sites showed the nuclease preferentially cuts supercoiled DNA at an AT-rich region. Varying levels of nuclease activity could be detected in different tissues of the mung bean seedling. The highest activity was in the root tip and was correlated with histone H1 kinase activity. This implies a link between nuclease activity and cell division. Induction of cell division in mung bean hypocotyls with auxin promoted formation of root primordia and considerably increased the activity of single-stranded DNA endonucleases. The nuclease activity and histone H1 kinase activity were reduced in mung bean cuttings treated with hydroxyurea, but not in cuttings treated with oryzalin. The potential function of single-stranded DNA endonucleases is discussed.  相似文献   

6.
Sun JZ  Julin DA  Hu JS 《Biochemistry》2006,45(1):131-140
The 30 kDa C-terminal domain of the RecB protein (RecB30) has nuclease activity and is believed to be responsible for the nucleolytic activities of the RecBCD enzyme. However, the RecB30 protein, studied as a histidine-tagged fusion protein, appeared to have very low nucleolytic activity on single-stranded (ss) DNA [Zhang, X. J., and Julin, D. A. (1999) Nucleic Acids Res. 27, 4200-4207], which raised the question of whether RecB30 was indeed the sole nuclease domain of RecBCD. Here, we have purified the RecB30 protein without a fusion tag. We report that RecB30 efficiently degrades both linear and circular single- and double-stranded (ds) DNA. The endonucleolytic cleavage of circular dsDNA is consistent with the fact that RecB30 has amino acid sequence similarity to some restriction endonucleases. However, endonuclease activity on dsDNA had never been seen before for RecBCD or any fragments of RecBCD. Kinetic analysis indicates that RecB30 is at least as active as RecBCD on the ssDNA substrates. These results provide direct evidence that RecB30 is the universal nuclease domain of RecBCD. The fact that the RecB30 nuclease domain alone has high intrinsic nuclease activity and can cleave dsDNA endonucleolytically suggests that the nuclease activity of RecB30 is modulated when it is part of the RecBCD holoenzyme. A new model has been proposed to explain the regulation of the RecB30 nuclease in RecBCD.  相似文献   

7.
Amundsen SK  Smith GR 《Genetics》2007,175(1):41-54
The major pathway of genetic recombination and DNA break repair in Escherichia coli requires RecBCD enzyme, a complex nuclease and DNA helicase regulated by Chi sites (5'-GCTGGTGG-3'). During its unwinding of DNA containing Chi, purified RecBCD enzyme has two alternative nucleolytic reactions, depending on the reaction conditions: simple nicking of the Chi-containing strand at Chi or switching of nucleolytic degradation from the Chi-containing strand to its complement at Chi. We describe a set of recC mutants with a novel intracellular phenotype: retention of Chi hotspot activity in genetic crosses but loss of detectable nucleolytic degradation as judged by the growth of mutant T4 and lambda phages and by assay of cell-free extracts. We conclude that RecBCD enzyme's nucleolytic degradation of DNA is not necessary for intracellular Chi hotspot activity and that nicking of DNA by RecBCD enzyme at Chi is sufficient. We discuss the bearing of these results on current models of RecBCD pathway recombination.  相似文献   

8.
The vast majority of nuclease activity in yeast mitochondria is due to a single polypeptide with an apparent molecular weight of 38,000. The enzyme is located in the mitochondrial inner membrane and requires non-ionic detergents for solubilization and activity. A combination of heparin-agarose and Cibacron blue-agarose chromatography was employed to purify the nuclease to approximately 90% homogeneity. The purified enzyme shows multiple activities: 1) RNase activity on single-stranded, but not double-stranded RNA, 2) endonuclease activity on single- and double-stranded DNA, and 3) a 5'-exonuclease activity on double-stranded DNA. Digestion products with DNA contain 5'-phosphorylated termini. Antibody raised against an analogous enzyme purified from Neurospora crassa (Chow, T. Y. K., and Fraser, M. (1983) J. Biol. Chem. 258, 12010-12018) inhibits and immunoprecipitates the yeast enzyme. This antibody inhibits 90-95% of all nuclease activity present in solubilized mitochondria, indicating that the purified nuclease accounts for the bulk of mitochondrial nucleolytic activity. Analysis of a mutant strain in which the gene for the nuclease has been disrupted supports this conclusion and shows that all detectable DNase activity and most nonspecific RNase activity in the mitochondria is due to this single enzyme.  相似文献   

9.
A single-strand-specific nuclease from germinating pea seeds has been purified to homogeneity. The purification procedure includes affinity chromatography on concanavalin A-Sepharose and gel filtration. The nuclease exhibits its activity at neutral pH and does not have an absolute requirement for a divalent cation. The purified nuclease also possesses a 3'-nucleotidase activity and is a glycoprotein containing about 20% carbohydrate. On native polyacrylamide gels the nuclease activity comigrates with the nucleotidase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of two subunits in the native enzyme. The nuclease and nucleotidase activities show differential rates of thermal inactivation, the latter following simple first order kinetics and the former exhibiting a more complex reaction. The nucleotidase was also found to be stimulated by DNA, the increase being greater with native DNA than with denatured DNA. These properties are possibly accounted for by the dimeric structure of the enzyme where the nucleotidase catalytic site resides in one subunit while the nuclease site is formed by interaction of both subunits. The enzyme also hydrolyzes double-stranded alkylated DNA and depurinated DNA at a higher rate than native DNA. Experimental evidence suggests that depurinated DNA is hydrolyzed in the region of apurinic sites.  相似文献   

10.
Single-strand-specific nucleases are a diverse and important group of enzymes that are able to cleave a variety of DNA structures present in duplex molecules. Nuclease SP, an enzyme from spinach, has been purified to apparent homogeneity, allowing for the unambiguous characterization of a number of its physical properties as well as its DNA strand cleavage specificities. The effects of ionic strength, pH, divalent metal cations, and temperature on nuclease SP activity have been examined in detail. Nuclease SP was found to be quite thermostable and could be stimulated by Co2+. In addition, the cleavage of UV-damaged and undamaged supercoiled plasmid substrates under a variety of conditions suggests that at least two types of structures are recognized and processed by nuclease SP: UV photoproduct-induced distortions and unwound "nuclease hypersensitive sites". These studies indicate that nuclease SP is functionally related to other single-strand-specific nucleases and is a potential enzymatic tool for probing and manipulating various types of DNA structures.  相似文献   

11.
Ciliate and yeast telomerase possess a nucleolytic activity capable of removing DNA from the 3' end of a single-stranded oligonucleotide substrate. The nuclease activity is thought to assist in enzyme proofreading and/or processivity. Herein, we report a previously uncharacterized human telomerase-associated nuclease activity that shares several properties with ciliate and yeast telomerases. Partially purified human telomerase, either from cell extracts or recombinantly produced, demonstrated an ability to remove 3' nontelomeric nucleotides from a substrate containing 5' telomeric DNA, followed by extension of the newly exposed telomeric sequence. This cleavage/extension activity was apparent at more than one position within the telomeric DNA and was influenced by sequences 5' to the telomeric/nontelomeric boundary and by substitution with a methylphosphonate moiety at the telomeric/nontelomeric DNA boundary. Our data suggest that human telomerase is associated with an evolutionarily conserved nucleolytic activity and support a model in which telomerase-substrate interactions can occur distal from the 3' primer end.  相似文献   

12.
Cell death by apoptosis occurs in a wide range of physiological events including repertoire selection of lymphocytes and during immune responses in vivo. A hallmark of apoptosis is the internucleosomal DNA degradation for which a Ca2+,Mg(2+)-dependent endonuclease has been postulated. This nuclease activity was extracted from both rat thymocyte and lymph node cell nuclei. When incubated with nuclei harbouring only limited amounts of endogenous nuclease activity, the ladder pattern of DNA fragments characteristic of apoptosis was induced. This extractable nucleolytic activity was immunoprecipitated with antibodies specific for rat deoxyribonuclease I (DNase I) and was inhibited by actin in complex with gelsolin segment 1, strongly pointing to the presence of a DNase I-type enzyme in the nuclear extracts. COS cells transiently transfected with the cDNA of rat parotid DNase I expressed the enzyme, and their nuclei were able to degrade their DNA into oligosome-sized fragments. PCR analysis of mRNA isolated from thymus, lymph node cells and kidney yielded a product identical in size to that from rat parotid DNase I. Immunohistochemical staining with antibodies to rat DNase I confirmed the presence of DNase I antigen in thymocytes and lymph node cells. The tissue distribution of DNase I is thus extended to tissues with no digestive function and to cells which are known to be susceptible to apoptosis. We propose that during apoptosis, an endonuclease indistinguishable from DNase I gains access to the nucleus due to the breakdown of the ER and the nuclear membrane.  相似文献   

13.
E J Ward  M Haber  M D Norris  B W Stewart 《Biochemistry》1985,24(21):5803-5809
We have investigated structural change in rat liver DNA produced by different isolation procedures and specifically compared the integrity of DNA derived by phenol extraction from isolated and purified nuclei with preparations extracted immediately from a crude liver homogenate containing intact nuclei. As indicated by stepwise elution from benzoylated DEAE-cellulose, most structural change in DNA was evident following nuclei isolation. Damage principally involved generation of single-stranded regions in otherwise double-stranded DNA fragments; totally single-stranded DNA was not detected by hydroxylapatite chromatography. Caffeine gradient elution suggested formation of single-stranded regions extending for up to several kilobases. In neutral sucrose gradients, differences in sedimentation rates of respective DNA samples consequent upon S1 nuclease digestion could be detected after isolation of nuclei, though not in other circumstances. The observed single-strand-specific nuclease digestion of DNA could apparently be reduced if steps were taken to reduce autodigestion during nuclei isolation by reduction of temperature and covalent cation concentration. The results are discussed in terms of the use of exogenous and endogenous nucleases in chromatin fractionation studies involving isolated nuclei and possible artifactual findings that may be generated by single-strand-specific autodigestion.  相似文献   

14.
Multiple DNA-dependent enzyme activities have been detected in highly purified preparations of a single-strand-specific nuclease from vaccinia virus. These enzyme preparations were extensively purified and characterized by using superhelical DNAs as substrates. In particular, the nuclease activity was monitored by the extent of conversion of supercoiled closed duplex DNA (DNA I) to nicked circular DNA (DNA II), which could subsequently be converted to duplex linear DNA (DNA III) by prolonged incubation with the enzyme. DNA species which were not substrates for the enzyme included relaxed closed duplex DNA, DNA II which had been prepared by nuclease S1 treatment or by photochemical nicking of DNA I, and DNA III. With plasmid pSM1 DNA as substrate, the extent of cleavage of DNA I to DNA II was found to increase with superhelix density above a threshold value of about -0.06. The linear reaction products were examined by gel electrophoresis after restriction enzyme digestion of the DNAs from plasmids pSM1 and pBR322 and of the viral DNAs from bacteriophage phi X174 (replicative form) and simian virus 40, and the map coordinate locations of the scissions were determined. These products were further examined by electron microscopy and by gel electrophoresis under denaturing conditions. Electron micrographs taken under partially denaturing conditions revealed molecules with terminal loops or hairpins such as would result from the introduction of cross-links at the cutting sites. These species exhibited snapback renaturation. The denaturing gel electrophoresis experiments revealed the appearance of new bands at locations consistent with terminal cross-linking. With pSM1 and pBR322 DNAs, this band was shown to contain DNA that was approximately twice the length of a linear single strand. The terminal regions of the cross-linked linear duplex reaction products were sensitive to nuclease S1 but insensitive to proteinase K, suggesting that the structure is a hairpin loop not maintained by a protein linker. A similar structure is found in mature vaccinia virus DNA.  相似文献   

15.
To study the fate of linear DNA in Escherichia coli cells, we linearized plasmid DNA at a specific site in vivo and monitored its behavior in recA mutant cells deficient in recombinational repair. Earlier, we had found that in wild-type (WT) cells linearized DNA is degraded to completion by RecBCD nuclease. We had also found that in WT cells chi sites on linear DNA inhibit RecBCD degradation by turning off its nucleolytic activities. Now we report that chi sites do not work in the absence of the RecA protein, suggesting that RecA is required in vivo to turn off the degradative activities of the RecBCD enzyme. We also report that the degradation of linearized plasmid DNA, even devoid of chi sites, is never complete in recA cells. Investigation of this linear DNA stability indicates that a fraction of recA cells are recBC phenocopies due to ongoing chromosomal DNA degradation, which titrates RecBCD nuclease. A possible role for RecBCD-promoted DNA degradation in controlling chromosomal DNA replication in E. coli is discussed.  相似文献   

16.
Fragments of rough and smooth endoplasmic reticulum purified from rat liver were injected into Xenopus oocyte cytoplasm. Light and electron microscopy, cytochemistry, immunocytochemistry, and enzyme assay were employed to determine the fate of heterologous membranes in the host cytoplasm. The in vivo-incubated microsomes disappeared in a time-dependent manner. Within 3 hr, rough microsomes were replaced by flattened ER cisternae and smooth microsomes were replaced by a network of anastomosing tubules. Polyclonal antibodies against rat liver microsomes and protein A-gold complexes were applied to glycol methacrylate sections of microinjected oocytes. Specific labeling was observed over discrete rough and smooth ER cisternae 3 hr after microinjection. Endogenous ER was not labeled by this technique, and label was not observed when sections were treated with pre-immune antibodies. Diaminobenzidene cytochemistry of microinjected rat lacrimal gland microsomes revealed enzyme activity in heterologous microsomes after 3 hr of in vivo incubation. Control injected microsomes (inactivated by heat denaturation) became associated with autophagic vacuoles, coincident with changes in lysosomal activity. Freshly isolated un-denatured microsomes did not provoke changes in lysosomal activity, and glucose-6-phosphatase activity associated with microinjected membranes could be detected 21 hr after in vivo incubation. Since rat liver microsomes reconstitute after in vivo incubation into cytoplasmic structures resembling those from which they were derived, we conclude that the microinjected membrane fragments act as templates for their own three-dimensional organization.  相似文献   

17.
A new nucleolytic activity that causes restricted digestion of U6 RNA was found in a nuclear extract of Ehrlich ascites tumor cells. This nucleolytic activity specifically degrades U6 RNA in the vicinity of its 3'-end with accumulation of a discrete sized degradation product of RNA of 90-95 nucleotides. Since this degradation product was not digested further by the nuclease under these conditions, this trimming of U6 RNA is supposed to be a biologically meaningful reaction. This nucleolytic activity required Mg2+, and was inhibited by Zn2+ or Ca2+.  相似文献   

18.
The intramembrane localization of linoleoyl-CoA desaturase in rat liver microsomes was examined by various methods, such as digestion by proteases, effect of detergents, and inhibition by the antibodies against purified terminal desaturase. Exposure of the desaturase on the surface of microsomal vesicles was suggested by the fact that the enzyme activity in the intact microsomes was susceptible to tryptic digestion, and considerably inhibited by anti-desaturase antibodies. When microsomes were previously treated with trypsin, the enzyme became more susceptible to the antibodies. Furthermore, it was demonstrated that the protein fragments cleaved from microsomal membranes by tryptic digestion formed a single precipitin line with the antibodies by the double-immunodiffusion test. These findings suggest the presence of linoleoyl-CoA desaturase on the cytoplasmic surface in the endoplasmic reticulum, since tryptic digestion liberates only the protein components situated on the surface area of membranes. In addition, desaturase activity in the intact microsomes was not stimulated by addition of the detergent, indicating the further outside location of the active site of the enzyme in microsomal vesicles. The pretreatment of microsomes with a low concentration (0.05%) of sodium deoxycholate, which destroys the permeability barrier for macromolecules without membrane disassembly, did not increase the susceptibility to tryptic digestion and the antibodies. These results show that linoleoyl-CoA desaturase is not present in a latent state in the membrane.  相似文献   

19.
The humoral response of mice to staphylococcal nuclease has previously been shown to be controlled genetically by H-2-linked Ir gene(s). In order to examine the possible contributions of variable region immunoglobulin genes to this genetic control, we have developed a system for the detection of idiotypic determinants on anti-nuclease immunoglobulin molecules. Antisera to nuclease were raised in two high responder strains, A/J and SJL. The corresponding antibodies were purified by affinity chromotography on Sepharose-nuclease columns, and were used to immunize groups of Lewis rats. An assay system was developed to assess the inhibition of antibody-mediated inactivation of nuclease activity by the rat antisera thus produced. Despite the presence of many species-specific anti-mouse immunoglobulin antibodies in these sera, inhibition of antibody-mediated enzyme inactivation was found to be specific for anti-nuclease antibodies of the immunizing strain. The inhibition could not be removed by extensive absorption with normal serum proteins from the antibody-producing strain, and was shown to require antibodies directed toward binding sites of the anti-nuclease antibodies. This inhibition thus defines idiotypic determinants of anti-nuclease antibodies.  相似文献   

20.
ABSTRACT Dicationic diarylfurans and dicationic carbazoles are under development as therapeutic agents against opportunistic infections. While their ability to bind to the minor groove of DNA has been established, the complete mechanism of action has not. We demonstrate here that an effective diarylfuran, 2,5-bis[4-(N-isopropylguanyl)phenyl]furan. inhibits an endo/exonuclease activity present in Pneumocystis carinii, Cryptococcus neoformans, Candida albicans , and Saccharomyces cerevisiae. This activity was purified from the particulate fraction of P. carinii. The enzyme requires Mg++ or Mn++, and shows preferences for single- over double stranded DNA and for AT-rich over GC-rich domains. A panel of 12 dicationic diarylfurans and eight dicationic carbazoles, previously synthesized, were evaluated for inhibition of the purified nuclease and for efficacy against Pneumocystis pneumonia in rats. Among the diarylfurans, potency of nuclease inhibition, in vivo antimicrobial activity, and DNA binding strength were all strongly correlated (p < 0.001). These findings suggest that one target for antimicrobial action of the diarylfurans may be a nucleolytic or other event requiring unpairing of DNA strands. Dicationic carbazoles which were strong nuclease inhibitors all displayed anti- Pneumocystis activity in vivo, but there were also noninhibitory carbazoles with in vivo efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号