首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Amplification and sequence analysis of the 16S rRNA genes from DNA samples extracted directly from the environment allows the study of microbial diversity in natural ecosystems without the need for cultivation. In this study this methodology has been applied to two coastal lagoons. Activity and numbers of heterotrophic bacteria have indicated that, as expected, Prévost lagoon (located on the French Mediterranean coast) is more eutrophic than that of the Arcachon Bay (French Atlantic coast). Analysis of partial 16S rRNA gene sequences revealed that, in both environments, a relatively large number of clones related to Cytophaga/Flexibacter/Bacteroides as well as to α-Proteobacteria were found. One hundred percent similarity with the sequences of the data bases were not found for any of the more than a hundred clones studied, in fact for most clones maximum similarity was below 95% for the approx. 200 bases sequenced. Similarity was not higher with any of the sequences found for the 14 isolates (pure cultures) obtained from the same samples. Redundancy, i.e. number of identical sequences, was higher in the samples from Arcachon. In addition, sequences related to representatives of ten major phylogenetic branches of Bacteria were obtained from Prévost lagoon; however only five branches were represented by the data from Arcachon. These findings indicated a higher bacterial phylogenetic diversity in the Prévost lagoon.  相似文献   

2.
Bacterial diversity in surface sediments from the Pacific Arctic Ocean   总被引:5,自引:0,他引:5  
In order to assess bacterial diversity within four surface sediment samples (0–5 cm) collected from the Pacific Arctic Ocean, 16S ribosomal DNA clone library analysis was performed. Near full length 16S rDNA sequences were obtained for 463 clones from four libraries and 13 distinct major lineages of Bacteria were identified (α, β, γ, δ and ε-Proteobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, Firmicutes, Planctomycetes, Spirochetes, and Verrucomicrobia). α, γ, and δ-Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria were common phylogenetic groups from all the sediments. The γ-Proteobacteria were the dominant bacterial lineage, representing near or over 50% of the clones. Over 35% of γ-Proteobacteria clones of four clone library were closely related to cultured bacterial isolates with similarity values ranging from 94 to 100%. The community composition was different among sampling sites, which potentially was related to geochemical differences.  相似文献   

3.
Lin X Z  Gao A G  Chen H W 《农业工程》2008,28(12):6364-6370
Isolation, molecular identification and phylogenetic analysis were carried out to investigate the biodiversity of manganese bacteria in sediments which were collected from the Arctic Ocean during the 2nd Chinese Arctic Scientific Expedition. 21 and 19 species of cultivable strains were isolated from sediments at Stations P11 and S11, respectively, according to their distinct morphological character on the screening plate of manganese medium. Molecular identification and phylogenetic analysis showed that the cultivable manganese bacteria from Station P11 were basically composed of γ-Proteobacteria (γ subgroup of the Proteobacteria branch of the domain Bacteria) and Actinobacteria, which accounted for 86% and 14%, respectively. The isolates of γ-Proteobacteria mainly included Psychrobacter, Shewanella, Acinetobacter and Marinobacter, of which Psychrobacter was the major genus, which accounted for 67% of the γ-Proteobacteria. The cultivable manganese bacteria from Station S11 included α-Proteobacteria, γ-Proteobacteria and Flavobacteria of Bacteroides. The γ-Proteobacteria mainly included Shewanella, Marinomonas and Alteromonas. The majority of α-Proteobacteria was Sphingomonas. The phylogenetic analysis indicated that bacteria from sediments at Stations P11 and S11 had different cultivable manganese microbial communities. All tested strains had higher resistance to Mn2+, of which Marinomonas sp. S11-S-4 had the highest resistant ability.  相似文献   

4.
【目的】为了解东太平洋中国多金属结核勘探合同区西区2个站位(WBC1305和WBC1316A)深海沉积物细菌群多样性。【方法】直接提取环境样品总基因组,通过PCR和TA克隆策略构建了2个站位6个层次16S r RNA基因文库,对2个站位沉积物表层泥样中细菌多样性和群落结构特征进行分析,并通过构建系统发育树,进行系统发育学分析。【结果】2个站位6个文库共获得有效克隆533个,其中472个克隆包括α-变形菌纲、β-变形菌纲、γ-变形菌纲、δ-变形菌纲、浮霉菌门、酸杆菌门、硝化螺旋菌门、放线菌门、绿弯菌门、厚壁菌门、拟杆菌门、迷踪菌门、芽单胞菌门、Hydrogenedentes、Chlorobi和Nitrospinae16个细菌类群,而另外61个克隆为不可分类细菌类群。【结论】结果表明γ-变形菌纲和厚壁菌门分别是WBC1305和WBC1316A站位的优势种群;WBC1316A站位细菌群落结构更加丰富和复杂。  相似文献   

5.
Mangrove forest sediments produce significant amounts of methane, but the diversity of methanogenic archaea is not well known at present. Therefore, 16S rRNA gene libraries were made using archaea-specific primers and DNA extracted directly from Tanzanian mangrove sediment samples as a template. Analysis of sequence data showed phylotypes closely related to cultivated methylotrophic methanogenic archaea from the marine environment, or distantly related to acetoclastic and hydrogenotrophic methanogenic archaea. In an attempt to isolate relevant methanogenic archaea, we succeeded in obtaining a new mesophilic methylotrophic methanogenic archaeon (strain MM1) capable of utilizing methanol and methylated amines as the only substrates. Under optimum conditions, the cells of strain MM1 exhibited a high specific growth rate (μ) of 0.21±0.03 (i.e. doubling time of 3.2 h) on both methanol and trimethylamine. The 16S rRNA gene sequence of strain MM1 clustered with five environmental clones, indicating that MM1 is an important methanogenic methylotroph in mangrove sediments. Based on physiological and phylogenetic analyses, strain MM1 is proposed to be included in the species of Methanococcoides methylutens .  相似文献   

6.
北极海洋沉积物中锰细菌的分离与系统发育   总被引:2,自引:0,他引:2  
林学政  高爱国  陈皓文 《生态学报》2008,28(12):6364-6370
对中国第二次北极科学考察采集的北极海洋沉积物中的锰细菌进行了筛选、分离和系统发育分析。根据其在筛选平板上菌落的形态学特征,分别从站位P11和S11采集的沉积物中分离到了21株和19株锰细菌。系统发育分析表明,两个站位的锰细菌群落组成有着明显的差别。站位P11分离的可培养锰细菌主要由细菌域(Bacteria)中变形杆菌门的γ-变形杆菌纲(γ-Proteobacteria)和放线菌纲(Actinobacteria)组成,二者分别占86%和14%;γ-变形杆菌纲主要包括嗜冷杆菌属(Psychrobacter)、希瓦氏菌属(Shewanella)、假交替单胞菌属(Pseudoaheromonas)、不动杆菌属(Acinetobacter)、海杆菌属(Marinobacter),其中以嗜冷杆菌属为主,其比例可达67%。从站位S11分离到的可培养锰细菌主要包括细菌域中变形杆菌门的α-变形杆菌纲(α-Proteobacteria)和γ-变形杆菌纲以及拟杆菌门(Bacteroides)中的黄杆菌纲(Flavobaeteria);γ-变形杆菌纲主要包括希瓦氏菌属、海单胞菌属(Marinomonas)和交替单胞菌属(Aheromonas),α-变形杆菌纲主要为鞘氨醇单胞菌属(Sphingomonas)。实验菌株均对Mn^2+有着较强的抗性,其中以菌株Marinomonas sp.S11-S-4耐受性最高。  相似文献   

7.
Metagenomic data, especially sequence data from large insert clones, are most useful when reasonable inferences about phylogenetic origins of inserts can be made. Often, clones that bear phylotypic markers (usually ribosomal RNA genes) are sought, but sometimes phylogenetic assignments have been based on the preponderance of blast hits obtained with predicted protein coding sequences (CDSs). Here we use a cloning method which greatly enriches for ribosomal RNA-bearing fosmid clones to ask two questions: (i) how reliably can we judge the phylogenetic origin of a clone (that is, its RNA phylotype) from the sequences of its CDSs? and (ii) how much lateral gene transfer (LGT) do we see, as assessed by CDSs of different phylogenetic origins on the same fosmid? We sequenced 12 rRNA containing fosmid clones, obtained from libraries constructed using DNA isolated from Baltimore harbour sediments. Three of the clones are from bacterial candidate divisions for which no cultured representatives are available, and thus represent the first protein coding sequences from these major bacterial lineages. The amount of LGT was assessed by making phylogenetic trees of all the CDSs in the fosmid clones and comparing the phylogenetic position of the CDS to the rRNA phylotype. We find that the majority of CDSs in each fosmid, 57-96%, agree with their respective rRNA genes. However, we also find that a significant fraction of the CDSs in each fosmid, 7-44%, has been acquired by LGT. In several cases, we can infer co-transfer of functionally related genes, and generate hypotheses about mechanism and ecological significance of transfer.  相似文献   

8.
Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring   总被引:4,自引:0,他引:4  
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   

9.
In this study, we report on first 16S rRNA gene sequences from highly saline brine sediments taken at a depth of 1,515 m in the Kebrit Deep, northern Red Sea. Microbial DNA extracted directly from the sediments was subjected to PCR amplification with primers specific for bacterial and archaeal 16S rRNA gene sequences. The PCR products were cloned, and a total of 11 (6 bacterial and 5 archaeal) clone types were determined by restriction endonuclease digestion. Phylogenetic analysis revealed that most of the cloned sequences were unique, showing no close association with sequences of cultivated organisms or sequences derived from environmental samples. The bacterial clone sequences form a novel phylogenetic lineage (KB1 group) that branches between the Aquificales and the Thermotogales. The archaeal clone sequences group within the Euryarchaeota. Some of the sequences cluster with the group II and group III uncultivated archaea sequence clones, while two clone groups form separate branches. Our results suggest that hitherto unknown archaea and bacteria may thrive in highly saline brines of the Red Sea under extreme environmental conditions. Received: 5 February 1999 / Accepted: 14 July 1999  相似文献   

10.
Activity and numbers of heterotrophic bacteria have indicated that, as expected, Prevost Lagoon is more eutrophic than Arcachon Bay. Amplification and sequence analysis of the 16S rRNA genes from DNA samples extracted directly from the environment allow the determination of phylogenetic relationships among members of microbial communities in natural ecosystems without the need for cultivation. Analysis of partial 16S rRNA gene sequences obtained from Stations A and 11 revealed that, in both environments, a relatively large number of clones related to Cytophaga/FlexibacterBacteroides as well as to -Proteobacteria were found. One hundred percent similarity with the sequences of the data bases were not found for any of the more than a hundred clones studied. In fact for most clones maximum similarity was below 95% for the nucleotide series sequenced. Similarity was not higher with any of the sequences found for the 14 isolates (pure cultures) obtained from the same samples. Redundancy, i.e. number of identical sequences, was higher in the samples from Arcachon. In addition, sequences related to representatives of ten major phylogenetic branches of Eubacteria were obtained from Prevost Lagoon, however only five branches were represented by the data from Arcachon. These findings indicate a higher bacterial diversity in Prévost Lagoon.  相似文献   

11.
Abstract Most of the 16S ribosomal RNA gene of a sulfate-reducing magnetic bacterium, RS-1, was sequenced, and phylogenetic analysis was carried out. The results suggest that RS-1 is a member of the δ-Proteobacteria, and it appears to represent a new genus. RS-1 is the first bacterium reported outside the α-Proteobacteria that contains magnetite inclusions. RS-1 therefore disrupts the correlation between the α-Proteobacteria and possession of magnetite inclusions, and that between the δ-Proteobacteria and possession of greigite inclusions. The existence of RS-1 also suggests that intracellular magnetite biomineralization is of multiple evolutionary origins.  相似文献   

12.
Archaeal 16S rRNA gene clone libraries using PCR amplicons from eight different layers of the MD06-3051 core were obtained from the tropical Western Pacific sediments. A total of 768 clones were randomly selected, and 264 representative clones were sequenced by restriction fragment length polymorphism. Finally, 719 valid clones and 104 operational taxonomic units were identified after chimera-check and ≥97% similarity analysis. The phylogenetic analysis of 16S rDNA sequences obtained from sediment samples were very diverse and showed stratification with depth. Majority of the members were most closely related to uncultivated groups and physiologically uncharacterized assemblages. All phylotypes were affiliated with Crenarchaeota (76%) and Euryarchaeota (24%), respectively. Deep-sea archaeal group (DSAG, 41% of total clones) and miscellaneous crenarchaeotic group (MCG, 29% of total clones) belonging to Crenarchaeota were the most predominant archaeal 16S rDNA phylotypes in clone libraries. Phylotypes in this study shared high similarity with those in subsurface sediments from Peru Margin sites, which indicated that different geographical zones might host similar members of archaeal populations based on similar sedimentary environments. In our study, members of DSAG and MCG seemed to dominate certain layers of the nonhydrate sediments, suggesting a wide ecophysiological adaptation than previously appreciated. The spatial distribution and community structure of these groups might vary with the different geochemical gradients of the environment.  相似文献   

13.
Choi DH  Noh JH  Yu OH  Kang YS 《Biofouling》2010,26(8):953-959
To elucidate the bacterial diversity in biofilms formed on a condenser tube from a nuclear power plant, 16S rRNA gene sequences were examined using a PCR-cloning-sequencing approach. Twelve operational taxonomic units were retrieved in the clone library, and the estimated species richness was low (13.2). Most of the clones (94.7%) were affiliated with α-Proteobacteria; Planctomycetes and γ-Proteobacteria were much rarer. Interestingly, except for one clone belonging to Pseudoalteromonas, most of the sequences displayed sequence similarities <97% of those of the closest type strains. Based on 16S rRNA phylogenetic analysis, most bacteria were assigned to novel taxa above the species level. The low species richness and unusual bacterial composition may be attributable to selective pressure from chlorine in the cooling water. To prevent or control bacterial biofilms in cooling circuits, additional studies of the physiology and ecology of these species will be essential.  相似文献   

14.
We investigated the diversity of the bacterial 16S rRNA genes occurring on the abdominal setal tufts and in the emptied midgut of the marine mudshrimp Pestarella tyrrhena (Decapoda: Thalassinidea). There were no dominant phylotypes on the setal tufts. The majority of the phylotypes belonged to the phylum Bacteroidetes, frequently occurring in the water column. The rest of the phylotypes were related to anoxygenic photosynthetic α-Proteobacteria and to Actinobacteria. This bacterial profile seems more of a marine assemblage rather than a specific one suggesting that no specific microbial process can be inferred on the setal tufts. In the emptied midgut, 64 clones were attributed to 16 unique phylotypes with the majority (40.6%) belonging to the γ-Proteobacteria, specifically to the genus Vibrio, a marine group with known symbionts of decapods. The next most abundant group was the ɛ-Proteobacteria (28.1%), with members as likely symbionts related to the processes involving redox reactions occurring in the midgut. In addition, phylotypes related to the Spirochaetes (10.9%) were also present, with relatives capable of symbiosis conducting a nitrite associated metabolism. Entomoplasmatales, Bacteroidetes and Actinobacteria related phylotypes were also found. These results indicate a specific bacterial community dominated by putative symbiotic Bacteria within the P. tyrrhena’s midgut.  相似文献   

15.
Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.  相似文献   

16.
The 16S rRNA and pmoA genes from natural populations of methane-oxidizing bacteria (methanotrophs) were PCR amplified from total community DNA extracted from Lake Washington sediments obtained from the area where peak methane oxidation occurred. Clone libraries were constructed for each of the genes, and approximately 200 clones from each library were analyzed by using restriction fragment length polymorphism (RFLP) and the tetrameric restriction enzymes MspI, HaeIII, and HhaI. The PCR products were grouped based on their RFLP patterns, and representatives of each group were sequenced and analyzed. Studies of the 16S rRNA data obtained indicated that the existing primers did not reveal the total methanotrophic diversity present when these data were compared with pure-culture data obtained from the same environment. New primers specific for methanotrophs belonging to the genera Methylomonas, Methylosinus, and Methylocystis were developed and used to construct more complete clone libraries. Furthermore, a new primer was designed for one of the genes of the particulate methane monooxygenase in methanotrophs, pmoA. Phylogenetic analyses of both the 16S rRNA and pmoA gene sequences indicated that the new primers should detect these genes over the known diversity in methanotrophs. In addition to these findings, 16S rRNA data obtained in this study were combined with previously described phylogenetic data in order to identify operational taxonomic units that can be used to identify methanotrophs at the genus level.  相似文献   

17.
To elucidate the bacterial diversity in biofilms formed on a condenser tube from a nuclear power plant, 16S rRNA gene sequences were examined using a PCR-cloning-sequencing approach. Twelve operational taxonomic units were retrieved in the clone library, and the estimated species richness was low (13.2). Most of the clones (94.7%) were affiliated with α-Proteobacteria; Planctomycetes and γ-Proteobacteria were much rarer. Interestingly, except for one clone belonging to Pseudoalteromonas, most of the sequences displayed sequence similarities <97% of those of the closest type strains. Based on 16S rRNA phylogenetic analysis, most bacteria were assigned to novel taxa above the species level. The low species richness and unusual bacterial composition may be attributable to selective pressure from chlorine in the cooling water. To prevent or control bacterial biofilms in cooling circuits, additional studies of the physiology and ecology of these species will be essential.  相似文献   

18.
We examined the phylogenetic position of an arbuscular mycorrhizal fungus which produces two types of spore,Acaulospora gerdemannii andGlomus leptotichum, based upon the DNA sequence of the 18S rRNA gene. DNA was extracted separately from bothGlomus-like orAcaulospora-like spores and partial 5′-terminus segments of 18S rRNA gene were amplified by the PCR method. Several clones derived from each spore type were sequenced and compared. The sequences from both spore types agreed well, confirming that these morphologically different spores were formed by the same fungus. Nucleotide substitutions were found among several clones, suggesting polymorphism of the rRNA gene in glomalean fungi. Further phylogenetic analysis based upon the whole sequence of the 18S rRNA gene showed thatA. gerdemannii may be within the order Glomales but is far from the fungi that have been analyzed and probably should be in a new family.  相似文献   

19.
Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.  相似文献   

20.
Samples of the sponge Haliclona simulans were collected from Irish waters and subjected to a culture-independent analysis to determine the microbial, polyketide synthase (PKS) and non-ribosomal peptide synthase (NRPS) diversity. 16S rRNA gene libraries were prepared from total sponge, bacterial enriched sponge and seawater samples. Eight phyla from the Bacteria were detected in the sponge by phylogenetic analyses of the 16S rRNA gene libraries. The most abundant phylum in the total sponge library was the Proteobacteria (86%), with the majority of these clones being from the γ- Proteobacteria (77%); two groups of clones were dominant and together made up 69% of the total. Both of these groups were related to other sponge-derived microbes and comprised novel genera. Within the other bacterial phyla groups of clones representing novel candidate genera within the phyla Verrucomicrobia and Lentisphaerae were also found. Selective enrichment of the bacterial component of the sponge prior to 16S rRNA gene analysis resulted in a 16S rRNA gene library dominated by a novel genus of δ- Proteobacteria , most closely related to the Bdellovibrio . The potential for the sponge microbiota to produce secondary metabolites was also analysed by polymerase chain reaction amplification of PKS and NRPS genes. While no NRPS sequences were isolated seven ketosynthase (KS) sequences were obtained from the sponge metagenome. Analyses of these clones revealed a diverse collection of PKS sequences which were most closely affiliated with PKS from members of the Cyanobacteria , Myxobacteria and Dinoflagellata .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号