首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The role of various segments (gag or v-abl) of the Abelson murine leukemia virus (A-MuLV) genome in both lymphoid cell and fibroblast transformation was examined by deletion of areas from cloned, plasmid DNA representations of the genome. The deleted plasmids were tested by transfection into fibroblasts and by infection of bone marrow cells using virus stocks derived from the fibroblast transfectants. Deletion of gag coding sequence from the A-MuLV protein did not affect fibroblast transforming activity but abolished lymphoid transforming activity. The gag- A-MuLV genomes were very unstable in transformed fibroblasts leading to large secondary deletions in v-abl sequences. The gag- A-MuLV proteins also had lower autophosphorylation than their gag+ counterparts although cells transformed by gag- virus had a normal elevation of protein-linked phosphotyrosine. Systematic deletion of v-abl sequences showed that only 45,000 to the 130,000 molecular weight of v-abl sequence in the A-MuLV protein is needed for fibroblast transformation and, at most, slightly more is needed for lymphoid cell transformation.  相似文献   

2.
The v-abl protein of Abelson murine leukemia virus is a tyrosine-specific kinase. Its normal cellular homolog, murine c-abl, does not possess detectable tyrosine kinase activity in vitro. Previously, we have detected tyrosine kinase activity in vitro for an altered c-abl gene product (c-abl P210) in the K562 human chronic myelogenous leukemia cell line. The expression of this variant c-abl gene product correlates with chromosomal translocation and amplification of the c-abl gene in K562 cells. Like v-abl, c-abl P210 is a fusion protein containing non-abl sequences near the amino terminus of c-abl. We compared the in vitro tyrosine kinase activity of c-abl P210 with that of wild-type murine v-abl. The remarkable similarities of these two proteins with respect to cis-acting autophosphorylation, trans-acting phosphorylation of exogenous substrates, and kinase inhibition, using site-directed abl-specific antisera, suggested that c-abl P210 could function similarly to v-abl in vivo. In addition, c-abl P210 possessed an associated serine kinase activity in immunoprecipitates. The serine kinase activity was not inhibited by site-directed, abl-specific antisera that inhibit the tyrosine kinase activity, suggesting that the serine kinase activity is not an intrinsic property of c-abl P210. Thus, the activation of the c-abl gene in a human leukemia cell line may have functional consequences analogous to activation of the c-abl gene in Abelson murine leukemia virus.  相似文献   

3.
Hardy-Zuckerman 2 feline sarcoma virus (HZ2-FeSV), isolated from a multicentric feline fibrosarcoma is a replication-defective acute transforming feline retrovirus which originated by transduction of feline c-abl sequences with feline leukemia virus (FeLV) and is known to encode a 110-kilodalton gag-abl fusion protein with tyrosine-specific protein kinase activity (P. Besmer, W. D. Hardy, E. E. Zuckerman, P. J. Bergold, L. Lederman, and H. W. Snyder, Nature (London) 303:825-828, 1983). The nucleotide sequence of the abl segment in the HZ2-FeSV genome was determined and compared with the murine and human v-abl and c-abl sequences. The predicted transforming protein consists of 344 amino acids (aa) of FeLV gag origin, 439 aa of abl origin, and at least 200 aa of FeLV pol origin (p110gag-abl-pol). The 1,317-base-pair HZ2-FeSV v-abl segment (fv-abl) corresponds to 5' abl sequences which include the region known to specify the protein kinase domain. The 5' 189 base pairs of fv-abl correspond to 5' c-abl sequences not contained in Abelson murine leukemia virus (MuLV) v-abl. The mouse c-abl exon which contains these segments was identified, and its nucleotide sequence was determined. Comparison of the predicted amino acid sequence of fv-abl with those of Abelson MuLV v-abl and c-abl revealed five aa differences. The 5' junction between FeLV and abl was found to involve a preferred region in FeLV gag p30 (P. Besmer, J. E. Murphy, P. C. George, F. H. Qiu, P. J. Bergold, L. Lederman, H. W. Snyder, D. Brodeur, E. E. Zuckerman, and W. D. Hardy, Nature (London) 320:415-421, 1986). A six-base homology exists at the recombination site between the parental FeLV and the c-abl sequences. The 3' junction between fv-abl and FeLV pol predicts an in-frame fusion of fv-abl and FeLV pol. A transformed cell line containing a truncated gag-abl-pol protein, p85, that lacks most of the FeLV pol sequences was obtained by transfection of NIH 3T3 mouse cells. This result implies that the pol sequences of the p110gag-abl-pol protein are dispensable for fibroblast transformation. To assess whether the fv-abl segment specifies the unique biological properties of HZ2-FeSV, we constructed a Moloney MuLV-based version of HZ2-FeSV, Mo-MuLV(fv-abl), in which the fv-abl sequences were contained in a genetic context similar to that in HZ2-FeSV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The two major forms of the c-abl gene differ from their activated counterpart, the v-abl oncogene of the Abelson murine leukemia virus by the replacement of their N-terminal sequences with viral gag sequences. Overexpression of p150c-abl type IV in a retroviral vector similar to Abelson virus does not transform NIH 3T3 fibroblasts, even though it is expressed and myristoylated at levels comparable to pp160v-abl. Members of a nested set of deletion mutations of the N-terminus of c-abl type IV in this expression system will activate abl to transform murine fibroblasts. The smallest of these deletions, delta XB, efficiently transforms lymphoid cells in vitro and causes leukemia in vivo demonstrating that gag sequences are not necessary for abl-induced leukemogenesis. The delta XB mutation defines an N-terminal regulatory domain, which shares a surprising homology with chicken oncogene v-crk and phospholipase C-II. Although overexpression of the myristoylated form of c-abl does not transform cells, it nonetheless has a profound effect on cell growth.  相似文献   

5.
The single protein encoded by Abelson murine leukemia virus is a fusion of sequence from the retroviral gag genes with the v-abl sequence. Deletion of most of the gag region from the transforming protein results in a virus capable of transforming fibroblasts but no longer capable of transforming lymphoid cells. Smaller deletions in gag reveal that p15 gag sequences are responsible for this effect, whereas deletion of p12 sequences had no effect on lymphoid transformation. In transformed fibroblasts, p15-deleted and normal proteins had similar activities and subcellular localization. When the p15-deleted genome was introduced into previously transformed lymphoid lines, its protein product exhibited a marked instability. The tyrosine-specific autophosphorylation activity per cell was less than 1/20th that of the nondeleted protein. Although pulse-Ia-beling showed that the p15-deleted protein was synthesized efficiently, immunoblotting demonstrated that its steady-state level was less than 1/10th that of the nondeleted Abelson protein. The specific instability of the p15-deleted protein in lymphoid cells explains the requirement of these sequences for lymphoid but not fibroblast transformation.  相似文献   

6.
J B Konopka  S M Watanabe  O N Witte 《Cell》1984,37(3):1035-1042
The v-abl protein is known to be a tyrosine-specific protein kinase. However, its normal cellular homolog, c-abl P150, is not detectably phosphorylated on tyrosine in vivo or in vitro. The lack of associated tyrosine kinase activity for the c-abl protein seems paradoxical since it is the c-abl-derived sequences of the v-abl protein that encode the kinase activity. We have detected an altered human c-abl protein (P210) with associated tyrosine kinase activity in the K562 leukemia cell line. K562 cells are known to have a 9:22 chromosomal translocation involving the c-abl locus and have amplified the c-able gene 4 to 8 fold. The altered P210 human c-abl is serologically and structurally related to the normal c-abl protein. A structural alteration of the human c-abl protein. K562 cells may have unmasked its associated tyrosine kinase activity. This altered c-abl protein may have important implications for a mechanism of activation of this oncogene.  相似文献   

7.
Replication-competent retroviruses can be modified to carry nonviral genes. Such gene transfer vectors help define regions of the retroviral genome that are required in cis for retroviral replication. Moloney murine leukemia virus has been used extensively in vector construction, and all of the internal protein-encoding regions can be removed and replaced with other genes while still allowing production of virions containing and transmitting the altered retroviral genome. However, inclusion of a portion of the gag region from Moloney murine leukemia virus markedly increases the titer of virus derived from these vectors. We determined that this effect was due to more efficient packaging of the vector RNA into particles and did not depend on protein synthesis from the gag region. We conclude that the retrovirus packaging signal extends into the gag region. We have found that retroviral vectors containing the complete packaging signal allow more efficient gene transfer into a variety of cell types. In addition, these results may help explain why many oncogenic retroviruses have retained gag sequences and often express transforming proteins that are gag-onc hybrids.  相似文献   

8.
The nucleotide sequence of the gag gene of feline leukemia virus and its flanking sequences were determined and compared with the corresponding sequences of two strains of feline sarcoma virus and with that of the Moloney strain of murine leukemia virus. A high degree of nucleotide sequence homology between the feline leukemia virus and murine leukemia virus gag genes was observed, suggesting that retroviruses of domestic cats and laboratory mice have a common, proximal evolutionary progenitor. The predicted structure of the complete feline leukemia virus gag gene precursor suggests that the translation of nonglycosylated and glycosylated gag gene polypeptides is initiated at two different AUG codons. These initiator codons fall in the same reading frame and are separated by a 222-base-pair segment which encodes an amino terminal signal peptide. The nucleotide sequence predicts the order of amino acids in each of the individual gag-coded proteins (p15, p12, p30, p10), all of which derive from the gag gene precursor. Stable stem-and-loop secondary structures are proposed for two regions of viral RNA. The first falls within sequences at the 5' end of the viral genome, together with adjacent palindromic sequences which may play a role in dimer linkage of RNA subunits. The second includes coding sequences at the gag-pol junction and is proposed to be involved in translation of the pol gene product. Sequence analysis of the latter region shows that the gag and pol genes are translated in different reading frames. Classical consensus splice donor and acceptor sequences could not be localized to regions which would permit synthesis of the expected gag-pol precursor protein. Alternatively, we suggest that the pol gene product (RNA-dependent DNA polymerase) could be translated by a frameshift suppressing mechanism which could involve cleavage modification of stems and loops in a manner similar to that observed in tRNA processing.  相似文献   

9.
Abelson murine leukemia virus (A-MuLV) is a replication-defective virus that transforms both fibroblasts and hematopoietic cells in vitro. The virus encodes a 120,000-molecular-weight protein (P120) that is composed of Moloney murine leukemia virus-derived gag gene sequences and A-MuLV--specific sequences. This protein is the only A-MuLV--encoded protein that has been detected, and thus P120 is a candidate for the transforming protein of A-MuLV. We now report isolation and characterization of three new A-MuLV isolates that do not synthesize P120 but do produce analogous proteins of larger (160,000 molecular weight) and smaller (100,000 and 90,000 molecular weight) size. All of these A-MuLV isolates transform fibroblasts and lymphoid cells in vitro. Because the different A-MuLV proteins vary in the A-MuLV--specific region of the molecule, these variants may set a maximum limit on the size of the A-MuLV transforming protein.  相似文献   

10.
The mouse c-abl locus: molecular cloning and characterization   总被引:44,自引:0,他引:44  
J Y Wang  F Ledley  S Goff  R Lee  Y Groner  D Baltimore 《Cell》1984,36(2):349-356
The mouse c-abl gene, part of the sequence of which was captured in Moloney murine leukemia virus to generate the transforming gene (v-abl) of the Abelson murine leukemia virus, has been isolated and characterized. The c-abl locus spans 40 kb in the mouse genome with the v-abl homologies distributed in no less than ten clusters along 25 kb of the cloned DNA. Partial sequence of the v-abl homologous regions indicates that v-abl derived from c-abl mainly by splicing of multiple exons of the c-abl gene. The c-abl sequences can be subdivided into two regions: a tyrosine kinase coding sequence distributed among eight small clusters on the 5' end of the gene and a C-terminal portion consisting of one small and one large cluster, which are needed neither for the tyrosine kinase activity nor for the transforming ability of v-abl. Apparent exon/intron boundaries in the homologous kinase-coding regions of c-abl and c-src are at different locations.  相似文献   

11.
A series of deletion mutations localized near the 5' end of the Moloney murine leukemia virus genome was generated by site-specific mutagenesis of cloned viral DNA. The mutants recovered from such deleted DNAs failed to synthesize the normal glycosylated gag protein gPr80gag. Two of the mutants made no detectable protein, and a third mutant, containing a 66-base pair deletion, synthesized an altered gag protein which was not glycosylated. All the mutants made normal amounts of the internal Pr65gag protein. The viruses were XC positive and replicated normally in NIH/3T3 cells as well as in lymphoid cell lines. These results indicate that the additional peptides of the glycosylated gag protein are encoded near the 5' end, that the glycosylated and internal gag proteins are synthesized independently, and that the glycosylated gag protein is not required during the normal replication cycle. In addition, the region deleted in these mutants apparently encodes no cis-acting function needed for replication. Thus, all essential sequences, including those for packaging viral RNA, must lie outside this area.  相似文献   

12.
The Abelson murine leukemia virus transforming gene product is a phosphorylated protein encoded by both viral and cellular sequences. This gene product has an amino-terminal region derived from the gag gene of its parent virus and a carboxyl-terminal region of (abl) derived from a normal murine cellular gene. Using a combination of partial proteolytic cleavage techniques and antisera specific for gag and abl sequences, we mapped in vivo phosphorylation sites to different regions of the protein. Phosphoproteins encoded by strain variants and transformation-defective mutants of Abelson murine leukemia virus with defined deletions in the primary sequence of the abl region were compared by two dimensional limit digest peptide mapping. Specific phosphorylation pattern differences for wild-type and mutant proteins probably represented deletions of specific phosphate acceptor sites in the abl region. An in vitro autophosphorylation activity copurified with the Abelson murine leukemia virus protein from transformation-competent strains. A peptide analysis of such in vitro reactions demonstrated that these phosphorylation sites were restricted to the amino-terminal region, and the specific sites appeared to be unrelated to the sites found on proteins phosphorylated in vivo. Thus, the autophosphorylation reaction probably correlates with an activity important in transformation, but the specific end product in vitro bears little resemblance to its function in vivo.  相似文献   

13.
Abelson murine leukemia virus transforms both lymphoid cells and fibroblasts in vitro and induces a unique type of thymus-dependent lymphoma in vivo. Four fibroblast-transforming strains of Abelson murine leukemia virus were identified, based on the sizes of the Abelson murine leukemia virus-specific phosphoproteins produced by these isolates. Two of these strains, the standard P120- and the P160-producing viruses, transformed lymphoid cells efficiently in vitro and induced Abelson disease in vivo. Two other strains, which synthesized small Abelson murine leukemia virus-specific proteins with molecular weights of 90,000 (P90) and 100,000 (P100), transformed lymphoid cells very poorly both in vitro and in vivo. The reduced oncogenic potentials of these isolates were correlated with a high level of synthesis of fairly unstable P90 and P100. In addition, neither P90 nor P100 functional efficiently in protein kinase assays. The correlation of abnormal metabolism and deficient protein kinase activity with the reduced oncogenic potentials of these virus strains supported a direct role for these proteins and the kinase activity in transformation. Furthermore, these results suggested that the requirements for lymphoid cell transformation and fibroblast transformation are different.  相似文献   

14.
The effect of two missense mutations in abl on transformation by Abelson murine leukemia virus was evaluated. These mutations led to the substitution of a histidine for Tyr-590 and a glycine for Lys-536. Both changes gave rise to strains that were temperature dependent for transformation of both NIH 3T3 cells and lymphoid cells when expressed in the context of a truncated Abelson protein. In the context of the prototype P120 v-abl protein, the Gly-536 substitution generated a host range mutant that induced conditional transformation in lymphoid cells but had only a subtle effect on NIH 3T3 cells. The combination of both substitutions gave rise to a P120 strain that was temperature sensitive for both NIH 3T3 and lymphoid cell transformation. The Abelson proteins encoded by the temperature-sensitive strain displayed in vitro kinase activities that were reduced when compared with those of wild-type proteins. In vivo, levels of phosphotyrosine were reduced only at the restrictive temperature. Analysis of cells expressing either the wild-type P160 v-abl protein or the P210 bcr/abl protein and an Abelson protein encoded by a temperature-sensitive strain failed to correct this defect, suggesting either that tyrosine phosphorylation in vivo is an intramolecular reaction or that the protein encoded by the temperature-sensitive strain is a poor substrate for tyrosine phosphorylation in vivo. These results raise the possibility that tyrosine phosphorylation of Abelson protein plays a role in transformation.  相似文献   

15.
The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.  相似文献   

16.
The Abelson leukemia virus (AbLV) polyprotein P120 is compared to translational products representing the entire Moloney murine leukemia virus (MuLV) genome on the basis of [35S]methionine tryptic peptide composition. Three methionine-containing tryptic peptides present in Moloney Pr65gag are each shown to be present in both Pr75gag and in Pr180gag-pol. Of these, one peptide, corresponding to Moloney MuLV p12, but neither of two p30-specific peptides are present in AbLV P120. Among the 12 remaining methionine-containing peptides present in AbLV P120, many, if not all, are unique to AbLV P120 and not shared by either Moloney MuLV Pr180gag-pol or Pr82gag.  相似文献   

17.
Because Pr65gag is in part located in the nucleus and contains a putative bipartite nuclear targeting signal, we investigated the cellular location and structure of P55gag, a gag-encoded polyprotein known to lack the nucleocapsid (NC) protein NCp10. P55gag was found to be restricted to the cytoplasm of Moloney murine leukemia virus-infected cells. Of interest, P55gag was produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene. Surprisingly, our structural and immunological studies indicated that P55gag also lacks carboxy-terminal residues of CAp30. During the course of studying P55gag, we detected a new viral protein within purified virus particles that contained NCp10 tryptic peptide sequences and a CAp30 tryptic peptide lacking in P55gag. This viral protein, which we have named nucleocapsid-related protein (NCRP), also contained antigenic epitopes present in CAp30 and NCp10. P55gag- and NCRP-like proteins were also observed in AKV murine leukemia virus and feline leukemia virus systems. The precise site of cleavage within Pr65gag that produces P55gag and NCRP is unknown but lies upstream of the CAp30-NCp10 junction within the carboxy-terminal domain of CAp30. The existence of a form of NCp10 containing carboxy-terminal CAp30 sequences raises interesting possibilities about its functional role in genomic RNA packaging and/or viral RNA dimerization.  相似文献   

18.
Both glycosylated and unglycosylated polyproteins coded by the gag gene are produced in cells infected with Moloney murine leukemia virus. GpP80gag is a glycosylated precursor of a larger gag glycoprotein exported to the cell surface, whereas Pr65gag is an unglycosylated precursor of the virion internal structural proteins. GpP80gag contains not only carbohydrate, but also additional polypeptide sequences not found in Pr65gag. In the experiment reported here, we localized the differences between GpP80gag and Pr65gag with respect to the domains of the individual gag proteins. This was done by comparison of partial proteolytic cleavage fragments from Pr65gag, from GpP80gag, and from the unglycosylated form of GpP80gag (P75gag) which had been immunoprecipitated by antisera specific for gag proteins p30, p15, and p10. We conclude that the additional polypeptide sequences in GpP80gag are located at or very near the amino terminus of the polyprotein. The carbohydrate in GpP80gag is attached to polypeptide sequences held in common between GpP80gag and Pr65gag.  相似文献   

19.
Sera from rat bearing tumors induced by inoculation of FBJ murine osteogenic sarcoma virus (FBJ-MSV) nonproducer rat cells precipitate two proteins with molecular weights of 55,000 (p55) and 39,000 (p39) from FBJ-MSV-transformed cells. These proteins cannot be precipitated from uninfected cells or cells transformed by other strains of murine sarcoma virus, nor can they be precipitated by sera specific for the viral structural proteins. A methionine tryptic peptide mapping analysis showed that p55 and p39 have little or no homology and that they are not related to the helper virus gag and env gene products. p55 could also be detected among the in vitro translation products of 70S RNA from FBJ murine leukemia virus plus FBJ-MSV virions but not among those from FBJ murine leukemia virus alone. This suggests that p55 is encoded by the FBJ-MSV genome, whereas p39, which was not detected among the in vitro translation products, may not be virus encoded. Another difference between p55 and p39 is that p55 is phosphorylated, with most of the phosphate on a serine residue(s), whereas p39 is phosphorylated to a much lesser extent, if at all. No protein kinase activity was associated with p55 and p39 immune complexes under standard conditions. Our data suggest that p55 is a strong candidate for the FBJ-MSV oncogene product.  相似文献   

20.
UR2 is a newly characterized avian sarcoma virus whose genome contains a unique sequence that is not related to the sequences of other avian sarcoma virus transforming genes thus far identified. This unique sequence, termed ros, is fused to part of the viral gag gene. The product of the fused gag-ros gene of UR2 is a protein of 68,000 daltons (P68) immunoprecipitable by antiserum against viral gag proteins. In vitro translation of viral RNA and in vivo pulse-chase experiments showed that P68 is not synthesized as a large precursor and that it is the only protein product encoded in the UR2 genome, suggesting that it is involved in cell transformation by UR2. In vivo, P68 was phosphorylated at both serine and tyrosine residues. Immunoprecipitates of P68 with anti-gag antisera had a cyclic nucleotide-independent protein kinase activity that phosphorylated P68, rabbit immunoglobulin G in the immune complex, and alpha-casein. The phosphorylation by P68 was specific to tyrosine of the substrate proteins. P68 was phosphorylated in vitro at only one tyrosine site, and the tryptic phosphopeptide of in vitro-labeled P68 was different from those of Fujinami sarcoma virus P140 and avian sarcoma virus Y73-P90. A comparison of the protein kinases encoded by UR2, Rous sarcoma virus, Fujinami sarcoma virus, and avian sarcoma virus Y73 revealed that UR2-P68 protein kinase is distinct from the protein kinases encoded by those viruses by several criteria. Our results suggest that several different protein kinases encoded by viral transforming genes have the same functional specificity and cause essentially the same cellular alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号