首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzymology of n-alkane degradation was studied by using different Acinetobactersp¨? Cell-free extracts of A. calcoaceticus69/V oxidize the n-alkane to the corresponding fatty acid via the intermediately formed n-alkanol Soluble and particulate components are necessary for activity. Independently, a rubredoxin and a NADH-dependent rubredoxin reductase were isolated from this strain. Rubredoxin is induced by n-alkanes. The occurence of a cytochrome P-450 was observed only in other strains of Acinetobacter. A. calcoaceticus69/V contains a particulate pyridine nucleotide-independent and a soluble NADP-dependent alcohol dehydrogenase; the particulate aldehyde dehydrogenase is also NADP-dependent. The particulate dehydrogenases are inducible. The results concerning the regulation of enzymes of the citrate and glyoxylate cycle as well as of the malic enzyme indicate that the corresponding fatty acids formed from the alkanes are metabolized via β-oxidation.  相似文献   

2.
3.
The genetic background of long-chain n-alkane degradation was investigated in detail in strain E1, a member of the genetically unexplored Dietzia genus. A suicide vector carrying a 518-bp alkB fragment was site-specifically integrated into the E1 chromosome, and the full alkB, as well as its chromosomal environment was sequenced after plasmid rescue experiments. Four out of the nine putative genes were strongly induced by long-chain n-alkanes in wild-type E1. ORF4 encoded a natural fusion protein consisting of an integral membrane alkane hydroxylase and a rubredoxin domain. The significance of the alkB-rub gene in n-alkane degradation was investigated in phenotypic tests, and the disruption mutant strain exhibited severely impaired growth on n-C(20) alkane carbon source. The mutation was successfully complemented with the expression of intact AlkB-Rub protein, the full-length form of which was detected by simultaneous immunoblotting. The presented data furnish the first experimental evidence of the in vivo existence of an AlkB-Rub natural fusion protein, which plays a major role in long-chain n-alkane degradation.  相似文献   

4.
An antibody to Clostridium pasteurianum rubredoxin was found in goat serum after multiple injections of the protein. This antibody was purified by adsorption and elution from a Sepharose-rubredoxin column. The purified antibody formed a precipitating complex with C. pasteurianum rubredoxin and aporubredoxin, but not with the rubredoxin from Micrococcus aerogenes, Peptostreptococcus elsdenii, and Pseudomonas oleovorans. All rubredoxins tested were adsorbed to Sepharose-antirubredoxin columns indicating that each could form a soluble complex with anti-C. pasteurianum rubredoxin. The relative affinity of the antirubredoxin for the various rubredoxins was demonstrated by its ability to inhibit the rubredoxin-dependent reduction of cytochrome c by NADPH in the presence of NADP-ferredoxin oxidoreductase. These data suggest that there are two antigenic determinants in C. pasteurianum rubredoxin and only one such determinant in the rubredoxin from other organisms which are recognized by anti-C. pasteurianum rubredoxin.  相似文献   

5.
Oil pollution is an environmental problem of increasing importance. Alcanivorax borkumensis, with a high potential for biotechnological applications, is a key marine hydrocarbonoclastic bacterium and plays a critical role in the bioremediation of oil-polluted marine systems. In oil degrading bacteria, the first step of alkane degradation is catalyzed by a monooxygenase. The reducing electrons are tunneled from NAD(P)H via rubredoxin, one of the most primitive metalloproteins, to the hydroxylase. Rubredoxin reductase is a flavoprotein catalyzing the reduction of rubredoxin. There are two rubredoxin genes, alkG and rubA, in A. borkumensis genome. In this work, the genes encoding rubredoxin reductase (ABO_0162, rubB) and AlkG(ABO_2708, alkG) were cloned and functionally overexpressed in E. coli. Our results demonstrate that RubB could reduce AlkG, therefore compensating for the absence of AlkT, also a rubredoxin reductase, missing in A. borkumensis SK2 genome. These results will increase our knowledge concerning biological alkane degradation and will lead us to design more efficient biotransformation and bioremediation systems.  相似文献   

6.
Based on the crystal structures, three possible sequence determinants have been suggested as the cause of a 285 mV increase in reduction potential of the rubredoxin domain of rubrerythrin over rubredoxin by modulating the polar environment around the redox site. Here, electrostatic calculations of crystal structures of rubredoxin and rubrerythrin and molecular dynamics simulations of rubredoxin wild-type and mutants are used to elucidate the contributions to the increased reduction potential. Asn160 and His179 in rubrerythrin versus valines in rubredoxins are predicted to be the major contributors, as the polar side chains contribute significantly to the electrostatic potential in the redox site region. The mutant simulations show both side chains rotating on a nanosecond timescale between two conformations with different electrostatic contributions. Reduction also causes a change in the reduction energy that is consistent with a linear response due to the interesting mechanism of shifting the relative populations of the two conformations. In addition to this, a simulation of a triple mutant indicates the side-chain rotations are approximately anticorrelated so whereas one is in the high potential conformation, the other is in the low potential conformation. However, Ala176 in rubrerythrin versus a leucine in rubredoxin is not predicted to be a large contributor, because the solvent accessibility increases only slightly in mutant simulations and because it is buried in the interface of the rubrerythrin homodimer.  相似文献   

7.
Desulfovibrio vulgaris rubredoxin, which contains a single [Fe(SCys)4] site, is shown to be a catalytically competent electron donor to two enzymes from the same organism, namely, rubrerythrin and two-iron superoxide reductase (a.k.a. rubredoxin oxidoreductase or desulfoferrodoxin). These two enzymes have been implicated in catalytic reduction of hydrogen peroxide and superoxide, respectively, during periods of oxidative stress in D. vulgaris, but their proximal electron donors had not been characterized. We further demonstrate the incorrectness of a previous report that rubredoxin is not an electron donor to the superoxide reductase and describe convenient assays for demonstrating the catalytic competence of all three proteins in their respective functions. Rubrerythrin is shown to be an efficient rubredoxin peroxidase in which the rubedoxin:hydrogen peroxide redox stoichiometry is 2:1 mol:mol. Using spinach ferredoxin-NADP+ oxidoreductase (FNR) as an artificial, but proficient, NADPH:rubredoxin reductase, rubredoxin was further found to catalyze rapid and complete reduction of all Fe3+ to Fe2+ in rubrerythrin by NADPH under anaerobic conditions. The combined system, FNR/rubredoxin/rubrerythrin, was shown to function as a catalytically competent NADPH peroxidase. Another small rubredoxin-like D. vulgaris protein, Rdl, could not substitute for rubredoxin as a peroxidase substrate of rubrerythrin. Similarly, D. vulgaris rubredoxin was demonstrated to efficiently catalyze reduction of D. vulgaris two-iron superoxide reductase and, when combined with FNR, to function as an NADPH:superoxide oxidoreductase. We suggest that, during periods of oxidative stress, rubredoxin could divert electron flow from the electron transport chain of D. vulgaris to rubrerythrin and superoxide reductase, thereby simultaneously protecting autoxidizable redox enzymes and lowering intracellular hydrogen peroxide and superoxide levels.  相似文献   

8.
The torsion angle motions, generated from molecular dynamics (MD) simulations, of the two aliphatic chains of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in its lipid monolayer were evaluated by comparing these motions to those of an equivalent isolated (free) n-alkane chain, and the same n-alkane chain in its crystal lattice. The time-dependent autocorrelation and (1,2)-, (1,3)-, (1,4)-, and (1,5)-cross-correlation functions were constructed to analyze the torsion angle motions. It was found that the torsion angle motions of the DMPC lipid monolayer aliphatic chains are intermediate to those of the free n-alkane chain and the same n-alkane chain in its crystal lattice, particularly for short correlation times. The torsion angle motions of the aliphatic chains of DMPC are also found to be essentially independent of the charge state on the head group. The linear aliphatic chains of a DMPC lipid monolayer behave most like the isolated n-alkane chains with respect to torsion angle flexibility, even though the pairs of aliphatic chains of each DMPC are part of an ordered monolayer assembly. The aliphatic chains of the DMPC molecules in their monolayer exhibit at least two types of wave motions. One of the wave motions is the same in form, though somewhat more diffuse, as a traveling wave found in n-alkane crystals. The other wave motion involves major torsion angle transitions, and has some characteristics of the soliton properties observed in n-alkane crystals near their respective melt transition temperatures. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
Superoxide reductases are a class of non-haem iron enzymes which catalyse the monovalent reduction of the superoxide anion O2- into hydrogen peroxide and water. Treponema pallidum (Tp), the syphilis spirochete, expresses the gene for a superoxide reductase called neelaredoxin, having the iron protein rubredoxin as the putative electron donor necessary to complete the catalytic cycle. In this work, we present the first cloning, overexpression in Escherichia coli and purification of the Tp rubredoxin. Spectroscopic characterization of this 6 kDa protein allowed us to calculate the molar absorption coefficient of the 490 nm feature of ferric iron, epsilon=6.9+/-0.4 mM(-1) cm(-1). Moreover, the midpoint potential of Tp rubredoxin, determined using a glassy carbon electrode, was -76+/-5 mV. Reduced rubredoxin can be efficiently reoxidized upon addition of Na(2)IrCl(6)-oxidized neelaredoxin, in agreement with a direct electron transfer between the two proteins, with a stoichiometry of the electron transfer reaction of one molecule of oxidized rubredoxin per one molecule of neelaredoxin. In addition, in presence of a steady-state concentration of superoxide anion, the physiological substrate of neelaredoxin, reoxidation of rubredoxin was also observed in presence of catalytic amounts of superoxide reductase, and the rate of rubredoxin reoxidation was shown to be proportional to the concentration of neelaredoxin, in agreement with a bimolecular reaction, with a calculated k(app)=180 min(-1). Interestingly, similar experiments performed with a rubredoxin from the sulfate-reducing bacteria Desulfovibrio vulgaris resulted in a much lower value of k(app)=4.5 min(-1). Altogether, these results demonstrated the existence for a superoxide-mediated electron transfer between rubredoxin and neelaredoxin and confirmed the physiological character of this electron transfer reaction.  相似文献   

10.
The composition of ferredoxin and rubredoxin from Desulfovibrio gigas was determined. Ferrodoxin contained five cysteines, two methionines, and four irons. The rubredoxin was not unique.  相似文献   

11.
The oxidation of alkanes to alkanols by Pseudomonas oleovorans involves a three-component enzyme system: alkane hydroxylase, rubredoxin and rubredoxin reductase. Alkane hydroxylase and rubredoxin are encoded by the alkBFGHJKL operon, while previous studies indicated that rubredoxin reductase is most likely encoded on the second alk cluster: the alkST operon. In this study we show that alkT encodes the 41 x 10(3) Mr rubredoxin reductase, on the basis of a comparison of the expected amino acid composition of AlkT and the previously established amino acid composition of the purified rubredoxin reductase. The alkT sequence revealed significant similarities between AlkT and several NAD(P)H and FAD-containing reductases and dehydrogenases. All of these enzymes contain two ADP binding sites, which can be recognized by a common beta alpha beta-fold or fingerprint, derived from known structures of cofactor binding enzymes. By means of this amino acid fingerprint we were able to determine that one ADP binding site in rubredoxin reductase (AlkT) is located at the N terminus and is involved in FAD binding, while the second site is located in the middle of the sequence and is involved in the binding of NAD or NADP. In addition, we derived from the sequences of FAD binding reductases a second amino acid fingerprint for FAD binding, and we used this fingerprint to identify a third amino acid sequence in AlkT near the carboxy terminus for binding of the flavin moiety of FAD. On the basis of the known architecture and relative spatial orientations of the NAD and FAD binding sites in related dehydrogenases, a model for part of the tertiary structure of AlkT was developed.  相似文献   

12.
Oxidation of n-alkanes in bacteria is normally initiated by an enzyme system formed by a membrane-bound alkane hydroxylase and two soluble proteins, rubredoxin and rubredoxin reductase. Pseudomonas aeruginosa strains PAO1 and RR1 contain genes encoding two alkane hydroxylases (alkB1 and alkB2), two rubredoxins (alkG1 and alkG2), and a rubredoxin reductase (alkT). We have localized the promoters for these genes and analyzed their expression under different conditions. The alkB1 and alkB2 genes were preferentially expressed at different moments of the growth phase; expression of alkB2 was highest during the early exponential phase, while alkB1 was induced at the late exponential phase, when the growth rate decreased. Both genes were induced by C(10) to C(22)/C(24) alkanes but not by their oxidation derivatives. However, the alkG1, alkG2, and alkT genes were expressed at constant levels in both the absence and presence of alkanes.  相似文献   

13.
Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein.  相似文献   

14.
15.
16.
17.
In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.  相似文献   

18.
The de novo design of a rubredoxin-like Fe site.   总被引:1,自引:0,他引:1       下载免费PDF全文
A redox center similar to that of rubredoxin was designed into the 56 amino acid immunoglobulin binding B1 domain of Streptococcals protein G. The redox center in rubredoxin contains an iron ion tetrahedrally coordinated by four cysteine residues, [Fe(S-Cys)4](-1),(-2). The design criteria for the target site included taking backbone movements into account, tetrahedral metal-binding, and maintaining the structure and stability of the wild-type protein. The optical absorption spectrum of the Co(II) complex of the metal-binding variant is characteristic of tetrahedral chelation by four cysteine residues. Circular dichroism and nuclear magnetic resonance measurements reveal that the metal-free and Cd(II)-bound forms of the variant are folded correctly and are stable. The Fe(III) complex of the metal-binding mutant reproduces the optical and the electron paramagnetic resonance spectra of oxidized rubredoxin. This demonstrates that the engineered protein chelates Fe(III) in a tetrahedral array, and the resulting center is similar to that of oxidized rubredoxin.  相似文献   

19.
20.
The rubredoxin from the cryptomonad Guillardia theta is one of the first examples of a rubredoxin encoded in a eukaryotic organism. The structure of a soluble zinc-substituted 70-residue G. theta rubredoxin lacking the membrane anchor and the thylakoid targeting sequence was determined by multidimensional heteronuclear NMR, representing the first three-dimensional (3D) structure of a eukaryotic rubredoxin. For the structure calculation a strategy was applied in which information about hydrogen bonds was directly inferred from a long-range HNCO experiment, and the dynamics of the protein was deduced from heteronuclear nuclear Overhauser effect data and exchange rates of the amide protons. The structure is well defined, exhibiting average root-mean-square deviations of 0.21 A for the backbone heavy atoms and 0.67 A for all heavy atoms of residues 7-56, and an increased flexibility toward the termini. The structure of this core fold is almost identical to that of prokaryotic rubredoxins. There are, however, significant differences with respect to the charge distribution at the protein surface, suggesting that G. theta rubredoxin exerts a different physiological function compared to the structurally characterized prokaryotic rubredoxins. The amino-terminal residues containing the putative signal peptidase recognition/cleavage site show an increased flexibility compared to the core fold, but still adopt a defined 3D orientation, which is mainly stabilized by nonlocal interactions to residues of the carboxy-terminal region. This orientation might reflect the structural elements and charge pattern necessary for correct signal peptidase recognition of the G. theta rubredoxin precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号